1. Homework in Nonlinear Mechanics, 11. 10. 2013

Deadline, 25. 10. 2013

VSi is i-th digit of your registration number. For registration number 26102734 are VS6=7, VS8=4.

TASK 1: The figure shows two six-node triangular finite elements. Consider both the left and the right triangular six-node finite elements. Assume that element dimensions are a = (VS7 + 20) mm and h = (VS8 + 20) mm.

Figure 1: The left and the right triangular six-node finite elements

Displacement field $\vec{u}(x_1^0, x_2^0) = u(x_1^0, x_2^0)\vec{e}_1 + v(x_1^0, x_2^0)\vec{e}_2$ within each triangular finite element is given in the material coordinates by

$$u(x_1^0, x_2^0) = c_1 + c_2 x_1^0 + c_3 x_2^0 + c_4 x_1^0 x_2^0 + c_5 (x_1^0)^2 + c_6 (x_2^0)^2,$$

$$v(x_1^0, x_2^0) = b_1 + b_2 x_1^0 + b_3 x_2^0 + b_4 x_1^0 x_2^0 + b_5 (x_1^0)^2 + b_6 (x_2^0)^2.$$

The displacements of the nodes a_1, a_2, \ldots, a_{34} are known:

$\vec{u}(a_1) = (0\vec{e}_1 + 0\vec{e}_2)\mathrm{mm},$	$\vec{u}(a_{12}) = (0\vec{e}_1 + 0\vec{e}_2) \mathrm{mm},$	$\vec{u}(a_2) = (0\vec{e}_1 + 0\vec{e}_2)\mathrm{mm},$
$\vec{u}(a_{13}) = (0\vec{e}_1 + 0\vec{e}_2) \mathrm{mm},$	$\vec{u}(a_{23}) = (2\vec{e}_1 + 1\vec{e}_2) \mathrm{mm},$	$\vec{u}(a_{24}) = (3\vec{e}_1 + 1.5\vec{e}_2)\mathrm{mm},$
$\vec{u}(a_3) = (0\vec{e}_1 + 0\vec{e}_2) \mathrm{mm},$	$\vec{u}(a_{34}) = (3\vec{e}_1 + 1.5\vec{e}_2) \mathrm{mm},$	$\vec{u}(a_4) = (4\vec{e}_1 + 2\vec{e}_2) \mathrm{mm}.$

Determine:

- 1. and draw the deformed state;
- 2. constants c_1 , c_2 , c_3 , c_4 , c_5 , c_6 , b_1 , b_2 , b_3 , b_4 , b_5 and b_6 , such that the displacements of the nodes a_1, a_2, \ldots, a_{34} will be equal to the prescribed values;
- 3. the displacement vector of particle $T_1(x_1^0 = \frac{a}{3}, x_2^0 = \frac{h}{3})$;
- 4. express the spatial coordinates with the material coordinates;
- 5. deformation gradient F at particle T_1 ;

- 6. the inverse of the deformation gradient F at particle T_1 using two different methods;
- 7. deformed base vectors \vec{g}_1 , \vec{g}_2 and \vec{g}_3 at particle T_1 ;
- 8. tensor of small deformations ε at particle T_1 ;
- 9. polar decomposition RU of the deformation gradient F at particle T_1 .

TASK 2: We introduce the linear functions λ_1 , λ_2 and λ_3 of material coordinates (x_1^0, x_2^0) , where we assume that the function λ_i is at the *i*-th node of triangle a_i equal 1 and at the remaining two corners it is equal 0.

Figure 2: Linear functions λ_1 , λ_2 and λ_3 on the lower triangle.

The displacement fields u and v can be described with functions

$$u = \sum_{i} \lambda_i (2\lambda_i - 1) u(a_i) + 4 \sum_{i < j} \lambda_i \lambda_j u(a_{ij}),$$

$$v = \sum_{i} \lambda_i (2\lambda_i - 1) v(a_i) + 4 \sum_{i < j} \lambda_i \lambda_j v(a_{ij}).$$

- 1. Sketch the deformed state. Assume the same nodal displacements as in the first task.
- 2. Are the obtained displacement fields u and v the same as in the first task?
- 3. Are the resulting interpolation displacement functions u and v continuous along the edge a_2-a_3 ?
- 4. Determine the deformation gradient at node a_{23} using the displacement interpolation functions on the left triangle and using the displacement interpolation functions on the right triangle and compare the results. Are the resulting interpolation functions of displacements *u* and *v* continuously differentiable along the edge a_2 - a_3 ?