4. Homework in Nonlinear Mechanics, 15. 11. 2013

Deadline, 22. 11. 2013

VSi is i-th digit of your registration number. For registration number 26102734 are VS6=7, VS8=4.

TASK 1: Consider the following deformations of the body:

- 1. Body is stretched out in the directions $\vec{e}_{\xi} = \frac{\sqrt{3}}{2}\vec{e}_1 + \frac{1}{2}\vec{e}_2$, $\vec{e}_{\eta} = \frac{\sqrt{3}}{2}\vec{e}_2 + \frac{1}{2}\vec{e}_1$ and $\vec{e}_{\zeta} = \vec{e}_3$ with factors λ , $\frac{1}{\sqrt{\lambda}}$ and $\frac{1}{\sqrt{\lambda}}$, respectively.
- 2. Body is rotated in the direction \vec{e}_{ζ} for angle α .
- 3. Body is first stretched out in the directions $\vec{e}_{\xi} = \frac{\sqrt{3}}{2}\vec{e}_1 + \frac{1}{2}\vec{e}_2$, $\vec{e}_{\eta} = \frac{\sqrt{3}}{2}\vec{e}_2 + \frac{1}{2}\vec{e}_1$ and $\vec{e}_{\zeta} = \vec{e}_3$ with factors λ , $\frac{1}{\sqrt{\lambda}}$ and $\frac{1}{\sqrt{\lambda}}$, respectively and then rotated in the direction \vec{e}_{ζ} for angle α .
- 4. Body is first rotated in the direction \vec{e}_{ζ} for angle α and then stretched out in the directions $\vec{e}_{\xi} = \frac{\sqrt{3}}{2}\vec{e}_1 + \frac{1}{2}\vec{e}_2$, $\vec{e}_{\eta} = \frac{\sqrt{3}}{2}\vec{e}_2 + \frac{1}{2}\vec{e}_1$ and $\vec{e}_{\zeta} = \vec{e}_3$ with factors λ , $\frac{1}{\sqrt{\lambda}}$ and $\frac{1}{\sqrt{\lambda}}$, respectively.

Let us denote the deformation gradients at 1., 2., 3. and 4. task points with abbreviations F_1 , F_2 , F_3 and F_4 , respectively.

- 1. Calculate the deformation gradients F_1 , F_2 , F_3 and F_4 ;
- 2. Calculate *RU* polar decompositions of deformation gradients: $F_1 = R_1 U_1, F_2 = R_2 U_2, F_3 = R_3 U_3$ in $F_4 = R_4 U_4$;
- 3. Calculate V R polar decompositions of deformation gradients: $F_1 = V_1 R_1, F_2 = V_2 R_2, F_3 = V_3 R_3$ in $F_4 = V_4 R_4$;
- 4. Calculate the circumference of the initial circle expressed by equation $x_1^{0^2} + x_2^{0^2} = 1$ after the deformation, according to the deformation in the third case.
- 5. Calculate the area of the initial sphere expressed by equation $x_1^{0^2} + x_2^{0^2} + x_3^{0^2} = 1$ after the deformation, according to the deformation in the third case.
- 6. Calculate the volume of the initial unit ball expressed by equation $x_1^{0^2} + x_2^{0^2} + x_3^{0^2} \le 1$ after the deformation, according to the deformation in the third case.

Data: $\lambda = \frac{(VS7 + 10)}{10}$, $\alpha = (VS8 + 1) \cdot 10^{\circ}$.