Trdnost

MARJAN STANEK IN GORAN TURK

i

Ljubljana, 29. avgust 2002

TO JE (ŠE VEDNO) DELOVNA RAZLIČICA SKRIPTA.

VSEM, KI ME BODO OPOZORILI NA TIPKARSKE, RAČUNSKE IN DRUGE NAPAKE, SE LEPO ZAHVA-Ljujem. Hvaležen bom tudi vsem, ki mi bodo poslali pripombe in komentarje.

SVOJE KOMENTARJE, MNENJA, POPRAVKE... LAHKO POŠJETE TUDI NA: GTURK@FGG.UNI-LJ.SI

LEP POZDRAV, GORAN TURK

Vsebina

1

Vsebina

1

T T U U 1						
Upo	Upogib z osno silo					
1.1	Uvod	······				
1.2	2 Pomiki in vzdolžna normalna napetost					
	1.2.1	Opis oznak				
	1.2.2	Zveza med napetostmi in notranjimi silami 3				
	1.2.3	Ravnotežne enačbe za nosilec4				
	1.2.4	Kinematične enačbe				
	1.2.5	Vzdolžna normalna napetost in enačbe za račun pomikov				
	1.2.6	Robni pogoji				
	1.2.7	Geometrijske karakteristike prečnega prereza				
	1.2.8	Računanje pomikov in zasukov				
	1.2.9	Računanje vzdolžne normalne napetosti in določanje jedra prereza				
1.3	Strižni in prečni normalni napetosti v nosilcu s konstantnim prečnim prerezom					
	1.3.1	Primeri				
1.4	Glavne normalne napetosti v nosilcu					
1.5	Strižni in prečni normalni napetosti v nosilcu s spremenljivim prečnim prerezom					
	1.5.1	Krivočrtne koordinate ploskve ter diferencial ploščine ploskve				
	1.5.2	Ravnotežne enačbe za nosilec s spremenljivim prečnim prerezom 151				
	1.5.3	Strižni in prečni normalni napetosti v nosilcu s spremenljivim prerezom 154				
1.6	Pomiki linijskega nosilca z upoštevanjem strižnih deformacij					
1.7	7 Nosilec z ukrivljeno osjo					
	1.7.1	Tenzor deformacij glede na ukrivljene koordinate				
	1.7.2	Pomiki ter vzdolžna normalna napetost				
	1.7.3	Strižna in prečna normalna napetost				
1.8	Enačb	e gibanja nosilca				

T 7		
VCA	hin	я
1 500	JIII	и

2	Ena	omerna torzija 192				
	2.1	1 Enačbe enakomerne torzije				
	2.2	Reševanje enačb enakomerne torzije po metodi pomikov				
	2.3	Reševanje enačb enakomerne torzije po metodi napetosti				
		2.3.1 Analitična rešitev za eliptično obliko prečnega prereza				
		2.3.2 Analitična rešitev za pravokotno obliko prečnega prereza				
		2.3.3 Membranska analogija				
		2.3.4 Zveza med izbočitveno in napetostno funkcijo				
	2.4	Enakomerna torzija nosilcev s tankostenskim prerezom				
		2.4.1 Nosilci z odprtim tankostenskim prečnim prerezom				
		2.4.2 Nosilci z zaprtim tankostenskim prečnim prerezom				
	2.5	Primeri				
	2.6	Strižno in torzijsko središče				
		2.6.1 Strižno središče				
		2.6.2 Torzijsko središče				
_						
3	Met	da pomikov 276				
	3.1					
		$3.1.1 \text{Kinematicna enacta in Hookov zakon} \dots \dots$				
		$3.1.2$ Ravnotezna pogoja za vozilsce palicja $\ldots \ldots 280$				
		3.1.3 Ravnotezni pogoji za vsa vozlisca 282 2.1.4 Saste livrie terretrike heretrike 282				
		2.15 Bohni nogoji				
		216 Bežunski primori				
	2.2	5.1.0 Racunski primeri 200 Pauninski okujin 212				
	3.2	Ravininski okvir				
		3.2.1 Osnovne preupostavke 313 2.2.2 Opis oznak in koordinatnih sistemov 313				
		5.2.2 Opis oznak in koordinatnin sistemov 515 2.2.2 Togostno metriko elemente v lokelnem koordinatnam sistemu 215				
		3.2.4 Togostna matrika elementa v globalnom koordinatnem sistemu				
		3.2.4 Togostila matrika elementa v globalneni koordinatieni sistemu				
		3.2.5 Ravnotezin pogoji				
		3.2.0 Sestavijanje togostne matrike konstrukcije				
4	Virt	alni pomiki in virtualne sile 354				
	4.1	Izrek o virtualnih pomikih				
		4.1.1 Betti-Rayleighjev in Maxwellov izrek				
		4.1.2 Podajnostna in togostna matrika				
		4.1.3 Primeri				
	4.2	Izrek o virtualnih silah				
		4.2.1 Primeri				

5 Uporaba izreka o virtualnih silah			reka o virtualnih silah	387		
	5.1	Pomik	i in zasuki posameznih točk statično določenih linijskih konstrukcij	387		
		5.1.1	Delo virtualnih napetosti za upogib z osno silo in temperaturno obtežbo	387		
		5.1.2	Delo virtualnih napetosti zaradi strižnih sil	389		
		5.1.3	Delo virtualnih napetosti zaradi torzijskega momenta	391		
		5.1.4	Delo virtualnih napetosti v linijskem elementu	393		
		5.1.5	Določitev pomika in zasuka v točki na osi ravnega linijskega nosilca	394		
		5.1.6	Delo virtualnih napetosti v linearno elastičnih vzmeteh	436		
		5.1.7	Vpliv strižnih napetosti zaradi prečnih sil na pomike linijskega nosilca	445		
		5.1.8	Račun pomikov statično določenih linijskih konstrukcij z ukrivljeno osjo	452		
	5.2	Notran	je sile in pomiki statično nedoločenih linijskih konstrukcij z metodo sil	458		
		5.2.1	Primeri	468		
6	Geometrijska nelinearnost nosilcev 5					
	6.1	Geome	etrijska nelinearnost ravnega nosilca v ravnini	576		
		6.1.1	Teorija drugega reda	584		
		6.1.2	Togostna matrika linijskega elementa z ravno osjo po teoriji II. reda	596		
7	Ravnotežje konzervativnega sistema			604		
	7.1	Prvi za	kon termodinamike	604		
8	Stabilnost konzervativnih sistemov					
	8.1	1 Stabilno in nestabilno ravnotežno stanje				
	8.2	Nekate	ri pojmi analize stabilnosti konstrukcij	612		
Stv	Stvarno kazalo 6					

1

iv

1 Upogib z osno silo

1.1 Uvod

Osnovne enačbe teorije elastičnosti (kinematične enačbe, ravnotežne enačbe in Hookov zakon) uporabimo pri računskem obravnavanju deformiranja poljubnega trdnega telesa. Obravnavamo **linijski nosilec z ravno osjo**. Geometrija nosilca je podana z dolžino in lego osi nosilca in obliko ter dimenzijami prečnih prerezov pravokotnih na os. Ločeno obravnavamo dve vrsti obtežbe: **upogib z osno silo** in **enakomerno torzijo**. Pri upogibu z osno silo je nosilec obtežen tako, da sta zasuk ω_x okrog vzdolžne osi nosilca ter torzijski moment M_{xS} na strižno središče[†] enaka nič. Enakomerno torzijo, pri kateri je $\omega_x \neq 0$, obravnavamo v poglavju 2.

Upogib z osno silo razdelimo na več razdelkov. V razdelku 1.2 izpeljemo enačbe za račun pomikov u_x , u_y in u_z ter vzdolžne normalne napetosti σ_{xx} zaradi osne sile N_x in upogibnih momentov M_y in M_z . Pri tem vpliv prečnih sil N_y in N_z na pomike in vzdolžno normalno napetost zanemarimo. Pri izpeljavi uporabimo **kinematične enačbe** in **Hookov zakon**. V razdelku 1.3 izpeljemo enačbi za račun strižnih napetosti σ_{xy} in σ_{xz} v prečnem prerezu \mathscr{A}_x ter enačbi za račun prečnih normalnih napetosti v nosilcu s konstantnim prečnim prerezom. Pri izpeljavi uporabimo **ravnotežne enačbe** za del nosilca. V razdelku 1.4 računamo glavne normalne napetosti v nosilcu s konstantnim prečnim prerezom. Strižni in prečni normalni napetosti v nosilcu s spremenljivim prečnim prerezom obravnavamo v razdelku 1.5. V razdelku 1.6 računamo pomike nosilca tako, da upoštevamo tudi vpliv strižnih napetosti. Nosilec z ukrivljeno osjo obravnavamo v razdelku 1.7, enačbe za račun pomikov nosilca pri obtežbi, ki se s časom spreminja zapišemo v razdelku 1.8.

Ker so dimenzije prečnega prereza bistveno manjše od dolžine nosilca, je velikost prečnih normalnih napetosti σ_{yy} , σ_{zz} in strižne napetosti σ_{yz} zanemarljiva v primerjavi z vzdolžno normalno napetostjo σ_{xx} in s strižnima napetostima σ_{xy} in σ_{xz} . Na sliki 1.1 prikazujemo napetosti, ki jih v nosilcu običajno upoštevamo.

[†] Glej tudi razdelek 2.6.1.

SLIKA 1.1: V nosilcu običajno upoštevamo le vzdolžno normalno napetost σ_{xx} in strižni napetosti σ_{xy} in σ_{xz} v ravnini prečnega prereza

1.2 Pomiki in vzdolžna normalna napetost

V tem razdelku izrazimo notranjo silo \vec{N} in notranji moment \vec{M} v prečnem prerezu \mathscr{A}_x z vektorjem napetosti $\vec{\sigma}_x$ in ponovno izpeljemo ravnotežni enačbi za nosilec, ki povezujeta zunanji obtežbi $\vec{\mathscr{P}}, \vec{\mathscr{M}}$ ter notranjo silo \vec{N} in notranji moment \vec{M} . V nadaljevanju izrazimo pomike u_x, u_y, u_z in zasuka ω_y, ω_z poljubnega delca (točke kontinuuma) s pomiki u, v in w osi nosilca, izpeljemo diferencialne enačbe za račun pomikov u, v in w ter zapišemo normalno napetost σ_{xx} z notranjimi silami N_x, M_y in M_z .

1.2.1 Opis oznak

Za nosilec je značilno, da je njegova dolžina L bistveno večja od dimenzij prečnega prereza \mathscr{A}_x (slika 1.2)

$$L \gg \max |\vec{\rho_x}|. \tag{1.1}$$

SLIKA 1.2: Ravni nosilec določajo prečni prerezi \mathscr{A}_x z mejno črto \mathscr{C}_x in os linijskega nosilca z dolžino L

Krajevni vektor $\vec{\rho}_x$ poljubne točke prečnega prereza \mathscr{A}_x glede na težišče T_p zapišemo s komponentami takole:

$$\vec{\rho}_x = y \, \vec{e}_y + z \, \vec{e}_z. \tag{1.2}$$

Koordinatni sistem postavimo tako, da poteka os x skozi težišča T_p prečnih prerezov \mathscr{A}_x . Prečni prerez določa ravnina, pravokotna na vzdolžno os x. Mejno črto prečnega prereza \mathscr{A}_x določa sklenjena krivulja \mathscr{C}_x . Z A_x označimo ploščino prečnega prereza \mathscr{A}_x , s C_x pa dolžino mejne črte \mathscr{C}_x . Ker so dimenzije prečnega prereza bistveno manjše od dolžine nosilca, ga obravnavamo z enodimenzionalnim računskim modelom, ki ga določa **os nosilca**. Os nosilca je običajno krivulja, ki povezuje težišča T_p vseh prečnih prerezov \mathscr{A}_x . V tem razdelku obravnavamo linijske nosilce z ravno osjo in s spremenljivim prečnim prerezom. Pri tem os nosilca sovpada z osjo x.

1.2.2 Zveza med napetostmi in notranjimi silami

Rezultanta napetosti $\vec{\sigma}_N$ v prerezu \mathscr{A}_N je **notranja sila** \vec{N}_N , rezultirajoči moment glede na izbrano točko O_N v prerezu \mathscr{A}_N pa **notranji moment** \vec{M}_N [†]

$$\vec{N}_N = \int\limits_{\mathscr{A}_N} \vec{\sigma}_N \, dA_N \tag{1.3}$$

$$\vec{M}_N = \int\limits_{\mathscr{A}_N} \vec{\rho}_N \times \vec{\sigma}_N \, dA_N \tag{1.4}$$

Enota za notranjo silo je N (Newton), za notranji moment pa Nm (Newtonmeter). Za prečni prerez \mathscr{A}_x z normalo \vec{e}_x označimo notranjo silo z \vec{N}_x , notranji moment pa z \vec{M}_x . Oznako normale prereza običajno izpustimo

$$\vec{N}_x \equiv \vec{N} = \int_{\mathscr{A}_x} \vec{\sigma}_x \, dA_x,\tag{1.5}$$

$$\vec{M}_x \equiv \vec{M} = \int_{\mathscr{A}_x} \vec{\rho}_x \times \vec{\sigma}_x \, dA_x.$$
(1.6)

Notranjo silo \vec{N} razstavimo na **osno silo** N_x in **prečni sili** N_y in N_z

$$\vec{N} = N_x \, \vec{e}_x + N_y \, \vec{e}_y + N_z \, \vec{e}_z, \tag{1.7}$$

notranji moment \vec{M} pa na **torzijski moment** M_x in **upogibna momenta** M_y in M_z

$$\dot{M} = M_x \, \vec{e}_x + M_y \, \vec{e}_y + M_z \, \vec{e}_z. \tag{1.8}$$

[†] M. Stanek, G. Turk, Osnove mehanike trdnih teles, Univerza v Ljubljani, FGG, Ljubljana, 1998.

Če enačbi (1.5) in (1.6) zapišemo v skalarni obliki, dobimo notranje sile in notranje momente izražene z napetostmi (slika 1.3) (upoštevamo enačbi (1.7) in (1.8) ter $\vec{\rho}_x \times \vec{\sigma}_x = (y \sigma_{xz} - z \sigma_{xy}) \vec{e}_x + z \sigma_{xx} \vec{e}_y - y \sigma_{xx} \vec{e}_z)$

$$N_{x} = \int_{\mathscr{A}_{x}} \sigma_{xx} \, dA_{x}, \qquad N_{y} = \int_{\mathscr{A}_{x}} \sigma_{xy} \, dA_{x}, \qquad N_{z} = \int_{\mathscr{A}_{x}} \sigma_{xz} \, dA_{x}, \qquad (1.9)$$
$$M_{r} = \int (y \, \sigma_{rz} - z \, \sigma_{ry}) \, dA_{r}, \qquad M_{y} = \int z \, \sigma_{rx} \, dA_{r}, \qquad M_{z} = -\int y \, \sigma_{rx} \, dA_{r}. \qquad (1.10)$$

$$M_x = \int_{\mathscr{A}_x} (y \,\sigma_{xz} - z \,\sigma_{xy}) \, dA_x, \qquad M_y = \int_{\mathscr{A}_x} z \,\sigma_{xx} \, dA_x, \qquad M_z = -\int_{\mathscr{A}_x} y \,\sigma_{xx} \, dA_x. \tag{1.10}$$

SLIKA 1.3: a) Notranja sila $d\vec{N}$ pripada ploskvi $d\mathscr{A}_x$ b) Notranja sila \vec{N} in notranji moment \vec{M} v težišču prereza \mathscr{A}_x

1.2.3 Ravnotežne enačbe za nosilec

Obravnavamo del nosilca dolžine x, ki zavzema območje \mathscr{V}_1 , določeno s ploskvami \mathscr{A}_{x0} , \mathscr{A}_x in \mathscr{S}_1 . Odstranjeni desni del nosilca nadomestimo z notranjo silo \vec{N} in z notranjim momentom \vec{M} (slika 1.4).

SLIKA 1.4: Na nosilec delujejo zunanja obtežba \vec{p}_S in \vec{v} ter notranja sila \vec{N} in notranji moment \vec{M}

Krajevni vektor $\vec{r_0}$ točke na osi nosilca, v kateri nosilec prerežemo, ima smer koordinatne osi x

$$\vec{r}_0 = x \, \vec{e}_x. \tag{1.11}$$

Ravnotežna pogoja za obravnavani del nosilca

$$\vec{R} = \vec{0}, \qquad \vec{M}_R^O = \vec{0}$$
 (1.12)

izrazimo z zunanjo površinsko obtežbo \vec{p}_S , s prostorninsko obtežbo \vec{v} , z notranjo silo \vec{N} in z notranjim momentom \vec{M} . Prvi ravnotežni pogoj je (z $\vec{N}(0)$ označimo integral $\int_{\mathscr{A}_{T0}} \vec{p}_S \, dA_x$)

$$\vec{N}(0) + \int_{\mathscr{S}_1} \vec{p}_S \, dS + \int_{\mathscr{V}_1} \vec{v} \, dV + \vec{N} = \vec{N}(0) + \int_0^x \left(\int_{\widetilde{\mathscr{C}}_x} \vec{p}_S(\bar{x}, y, z) \, dC_x + \int_{\widetilde{\mathscr{A}}_x} \vec{v}(\bar{x}, y, z) \, dA_x \right) d\bar{x} + \vec{N} = \vec{0}.$$
(1.13)

Izraz v integralu \int_0^x v enačbi (1.13) označimo s $\vec{\mathscr{P}}(x)$ in ga imenujemo **linijska obtežba**

$$\vec{\mathscr{P}}(x) = \int_{\mathscr{C}_x} \vec{p}_S \, dC_x + \int_{\mathscr{A}_x} \vec{v} \, dA_x. \tag{1.14}$$

Tako je

$$\vec{N}(0) + \int_{0}^{x} \vec{\mathscr{P}}(\bar{x}) \, d\bar{x} + \vec{N} = \vec{0}.$$
(1.15)

Z odvajanjem enačbe (1.15) po zgornji meji x dobimo prvo izmed **ravnotežnih enačb** ravnega linijskega nosilca, ki smo jo izpeljali že pri Statiki (ravnotežna enačba za prečni prerez)[†]

$$\frac{d\vec{N}}{dx} + \vec{\mathscr{P}}(x) = \vec{0}.$$
(1.16)

Tudi momentni ravnotežni pogoj izrazimo z zunanjima obtežbama \vec{p}_S in \vec{v} ter z notranjo silo \vec{N} in notranjim momentom \vec{M} (z $\vec{M}(0)$ označimo integral $\int_{\mathscr{A}_{x0}} \vec{\rho}_x \times \vec{p}_S dA_x$)

$$\vec{M}(0) + \int_{\mathscr{S}_{1}} \vec{r} \times \vec{p}_{S} \, dS + \int_{\mathscr{V}_{1}} \vec{r} \times \vec{v} \, dV + \vec{r}_{0} \times \vec{N} + \vec{M}$$

$$= \vec{M}(0) + \int_{0}^{x} \left(\int_{\widetilde{\mathscr{C}}_{x}} \vec{r} \times \vec{p}_{S}(\bar{x}, y, z) \, dC_{x} + \int_{\widetilde{\mathscr{A}}_{x}} \vec{r} \times \vec{v}(\bar{x}, y, z) \, dA_{x} \right) d\bar{x} + \vec{r}_{0} \times \vec{N} + \vec{M} = \vec{0},$$
(1.17)

[†] M. Stanek, G. Turk, Statika I, Univerza v Ljubljani, FGG, Ljubljana, 1996.

kjer krajevni vektor \vec{r} opisuje točke v integracijskem območju $\bar{\mathscr{A}}_x$:

$$\vec{r} = \vec{r}_0 + \vec{\rho}_x.$$
 (1.18)

Upoštevamo enačbi (1.2) in (1.18)

$$\vec{M}(0) + \int_{0}^{x} \left(\int_{\widetilde{\mathscr{C}}_{x}} \vec{r}_{0} \times \vec{p}_{S} \, dC_{x} + \int_{\widetilde{\mathscr{A}}_{x}} \vec{r}_{0} \times \vec{v} \, dA_{x} \right) d\bar{x} + \int_{0}^{x} \left(\int_{\widetilde{\mathscr{C}}_{x}} \vec{\rho}_{x} \times \vec{p}_{S} \, dC_{x} + \int_{\widetilde{\mathscr{A}}_{x}} \vec{\rho}_{x} \times \vec{v} \, dA_{x} \right) d\bar{x} + \vec{r}_{0} \times \vec{N} + \vec{M} = \vec{0}.$$

$$(1.19)$$

Vektor \vec{r}_0 je neodvisen od y in z, zato ga lahko izpostavimo iz integralov po \mathscr{C}_x in \mathscr{A}_x

$$\vec{M}(0) + \int_{0}^{x} \vec{\bar{r}}_{0} \times \left(\int_{\mathcal{C}_{x}} \vec{p}_{S} \, dC_{x} + \int_{\mathcal{A}_{x}} \vec{v} \, dA_{x} \right) d\bar{x} + \int_{0}^{x} \left(\int_{\mathcal{C}_{x}} \vec{\bar{\rho}}_{x} \times \vec{p}_{S} \, dC_{x} + \int_{\mathcal{A}_{x}} \vec{\bar{\rho}}_{x} \times \vec{v} \, dA_{x} \right) d\bar{x} + \vec{r}_{0} \times \vec{N} + \vec{M} = \vec{0}.$$

$$(1.20)$$

Izraz v prvem oklepaju smo označili s $\vec{\mathscr{P}}(x)$, izraz v drugem oklepaju označimo z $\vec{\mathscr{M}}(x)$ in imenujemo linijska momentna obtežba

$$\vec{\mathscr{M}}(x) = \int_{\mathscr{C}_x} \vec{\rho}_x \times \vec{p}_S \, dC_x + \int_{\mathscr{A}_x} \vec{\rho}_x \times \vec{v} \, dA_x.$$
(1.21)

Iz (1.20) dobimo

$$\vec{M}(0) + \int_{0}^{x} \vec{r}_{0} \times \vec{\mathscr{P}}(\bar{x}) \, d\bar{x} + \int_{0}^{x} \vec{\mathscr{M}}(\bar{x}) \, d\bar{x} + \vec{r}_{0} \times \vec{N} + \vec{M} = \vec{0}.$$
(1.22)

Enačbo (1.22) odvajamo po zgornji meji x

$$\vec{r}_0(x) \times \vec{\mathscr{P}}(x) + \vec{\mathscr{M}}(x) + \frac{d\vec{r}_0}{dx} \times \vec{N} + \vec{r}_0 \times \frac{d\vec{N}}{dx} + \frac{d\vec{M}}{dx} = \vec{0}.$$
(1.23)

Ker je (glej enačbo (1.11))

$$\frac{d\vec{r_0}}{dx} = \vec{e_x}$$

,

dobimo

$$\vec{r}_0 \times \left(\vec{\mathscr{P}}(x) + \frac{d\vec{N}}{dx}\right) + \vec{\mathscr{M}}(x) + \vec{e}_x \times \vec{N} + \frac{d\vec{M}}{dx} = \vec{0}.$$
(1.24)

Upoštevamo prvo ravnotežno enačbo (1.16) in dobimo drugo ravnotežno enačbo za nosilec, ki jo že poznamo †

$$\frac{d\vec{M}}{dx} + \vec{e}_x \times \vec{N} + \vec{\mathcal{M}}(x) = \vec{0}.$$
(1.25)

[†] M. Stanek, G. Turk, Statika I, Univerza v Ljubljani, FGG, Ljubljana, 1996.

1.2 Pomiki in vzdolžna normalna napetost

Linijska obtežba $\mathcal{P}(x)$ predstavlja nadomestno obtežbo računskega modela nosilca z enoto N/m. Linijska momentna obtežba $\mathcal{M}(x)$ pa predstavlja nadomestno momentno obtežbo z enoto Nm/m. Površinsko in prostorninsko obtežbo $\vec{p}_S(x, y, z)$ in $\vec{v}(x, y, z)$, ki sta funkciji treh spremenljivk, integriramo po prečnem prerezu \mathcal{A}_x oziroma vzdolž njegove meje \mathcal{C}_x in tako dobimo funkciji ene spremenljivke. V primeru ravnega nosilca je to x. Enačbi (1.14) in (1.21) zapišimo v komponentni obliki

$$\vec{\mathscr{P}}(x) = \mathscr{P}_x \vec{e}_x + \mathscr{P}_y \vec{e}_y + \mathscr{P}_z \vec{e}_z, \qquad (1.26)$$

$$\vec{\mathcal{M}}(x) = \mathcal{M}_x \vec{e}_x + \mathcal{M}_y \vec{e}_y + \mathcal{M}_z \vec{e}_z.$$
(1.27)

Če zapišemo v komponentni obliki tudi zunanji obtežbi \vec{p}_S in \vec{v}

$$\vec{p}_S(x, y, z) = p_{Sx} \, \vec{e}_x + p_{Sy} \, \vec{e}_y + p_{Sz} \, \vec{e}_z, \qquad \vec{v}(x, y, z) = v_x \, \vec{e}_x + v_y \, \vec{e}_y + v_z \, \vec{e}_z$$

in upoštevamo enačbe (1.14), (1.21) in (1.2), lahko izrazimo komponente linijske in linijske momentne obtežbe takole:

$$\mathcal{P}_{x}(x) = \int_{\mathscr{C}_{x}} p_{Sx} dC_{x} + \int_{\mathscr{A}_{x}} v_{x} dA_{x},$$

$$\mathcal{P}_{y}(x) = \int_{\mathscr{C}_{x}} p_{Sy} dC_{x} + \int_{\mathscr{A}_{x}} v_{y} dA_{x},$$

$$\mathcal{P}_{z}(x) = \int_{\mathscr{C}_{x}} p_{Sz} dC_{x} + \int_{\mathscr{A}_{x}} v_{z} dA_{x},$$

$$\mathcal{M}_{x}(x) = \int_{\mathscr{C}_{x}} (y \, p_{Sz} - z \, p_{Sy}) dC_{x} + \int_{\mathscr{A}_{x}} (y \, v_{z} - z \, v_{y}) dA_{x},$$

$$\mathcal{M}_{y}(x) = \int_{\mathscr{C}_{x}} z \, p_{Sx} dC_{x} + \int_{\mathscr{A}_{x}} z \, v_{x} dA_{x},$$

$$\mathcal{M}_{z}(x) = -\int_{\mathscr{C}_{x}} y \, p_{Sx} dC_{x} - \int_{\mathscr{A}_{x}} y \, v_{x} dA_{x}.$$
(1.29)

V enačbah (1.16) in (1.25) so vse količine odvisne le od spremenljivke x. To pomeni, da smo problem prevedli na os nosilca. Računski model obravnavane konstrukcije je torej **enodimenzionalno** "telo". Zapisali smo ravnotežne enačbe za **linijski** nosilec.

Če upoštevamo zvezo

$$\vec{e}_x \times \vec{N} = \begin{vmatrix} \vec{e}_x & \vec{e}_y & \vec{e}_z \\ 1 & 0 & 0 \\ N_x & N_y & N_z \end{vmatrix} = -N_z \, \vec{e}_y + N_y \, \vec{e}_z,$$
i

lahko zapišimo ravnotežne enačbe (1.16) in (1.25) v skalarni obliki

$$\frac{dN_x}{dx} + \mathscr{P}_x = 0, \qquad \frac{dN_y}{dx} + \mathscr{P}_y = 0, \qquad \frac{dN_z}{dx} + \mathscr{P}_z = 0 \qquad (1.30)$$

$$\frac{dM_x}{dx} + \mathcal{M}_x = 0, \qquad \frac{dM_y}{dx} - N_z + \mathcal{M}_y = 0, \qquad \frac{dM_z}{dx} + N_y + \mathcal{M}_z = 0.$$
(1.31)

Enačbe (1.30) in (1.31) izražajo ravnotežje v poljubnem prečnem prerezu nosilca in povezujejo notranje sile N_x , N_y , N_z in notranje momente M_x , M_y , M_z z zunanjo obtežbo \mathcal{P}_x , \mathcal{P}_y , \mathcal{P}_z , \mathcal{M}_x , \mathcal{M}_y in \mathcal{M}_z . Te enačbe smo izpeljali že pri Statiki. To so navadne diferencialne enačbe prvega reda, ki jih rešimo tako, da jih integriramo. Iz enačb (1.30) najprej izračunamo notranje sile N_x , N_y , N_z . Z znano rešitvijo za N_x , N_y in N_z iz enačb (1.31) določimo še notranje momente M_x , M_y in M_z . Pri reševanju diferencialnih enačb moramo upoštevati robne pogoje. Pri reševanju diferencialne enačbe prvega reda potrebujemo en robni pogoj, pri reševanju diferencialne enačbe drugega reda potrebujemo dva robna pogoja. Če zadnji dve izmed enačb (1.31) odvajamo po x in uporabimo zadnji izmed enačb (1.30), dobimo

$$\frac{d^2 M_y}{dx^2} + \mathscr{P}_z + \frac{d\mathscr{M}_y}{dx} = 0, \qquad \frac{d^2 M_z}{dx^2} - \mathscr{P}_y + \frac{d\mathscr{M}_z}{dx} = 0.$$
(1.32)

Enačbi (1.32) sta ravnotežni enačbi, iz katerih lahko z integriranjem izračunamo notranji moment M_y oziroma M_z neposredno iz linijske obtežbe in linijske momentne obtežbe.

Primer 1.1 Vodna zapornica, sestavljena iz navpičnih jeklenih nosilcev oblike C in vodoravnih hrastovih plohov, se naslanja na vrsto navpičnih jeklenih stebrov oblike I. Določimo zunanjo linijsko obtežbo na jekleni steber oblike I v trenutku, ko začnemo zapornico dvigovati (slika 1.5)! Višina zapornice je H = 2 m, dimenzije stebra oblike I so b = 10 cm, h = 20 cm, t = 1 cm, razdalja a = 1 m med stebri je veliko manjša od širine zapornice L ($L \gg a$). Ploščina A_x prečnega prereza \mathscr{A}_x stebra oblike I je

$$A_x = 2 b t + (h - 2 t) t = 38 \text{ cm}^2 = 0.0038 \text{ m}^2.$$

Obtežba tekočine pravokotno na plohe narašča linearno z globino vode (slika 1.5)

$$p_{Sz}'(x) = \gamma_v \left(H - x\right),$$

kjer je specifična teža vode $\gamma_v = 9.8 \text{ kN/m}^3$. S p_x označujemo obtežbo, s katero zapornica oziroma nosilec oblike C ob dvigovanju zapornice zaradi trenja delujejo na navpične stebre. Ta obtežba je zato

$$p_{Sx}(x) = p_{Sz}(x) k_t, (1.33)$$

kjer je p_z normalna obtežba, s katero zapornica pritiska na stebre, $k_t = 0.12$ pa je koeficient trenja med jeklenima površinama (med nosilcem oblike C in stebrom oblike I).

SLIKA 1.5: Voda preko hrastovih plohov obtežuje navpične stebre oblike I

Prostorninska teža stebrov je

i

$$\vec{v} = -\gamma_j \, \vec{e}_x$$

kjer je $\gamma_j = 76.5 \text{ kN/m}^3$. Na dolžino pregrade *a*, ki pripada enemu stebru, deluje obtežba kot je prikazano na sliki 1.6a!

Če obtežbo tekočine $p'_z(x)$, ki deluje na širini *a*, nadomestimo z obtežbo $p_z(x)$ na širino *b* stebra oblike I in pri tem upoštevamo, da se porazdeli enakomerno, je steber oblike I obtežen z (slika 1.6b)

$$p_{Sz}(x) = \frac{a}{b} p'_{Sz}(x) = \frac{a}{b} \gamma_v (H - x).$$
(1.34)

SLIKA 1.6: a) Na steber deluje obtežba p'_{Sz} na širini ab) Obtežbo p'_{Sz} nadomestimo z obtežbo na širini b

Linijsko obtežbo, ki deluje v težišču stebra oblike I izračunamo po enačbah (1.28) in (1.29)

$$\mathcal{P}_{x}(x) = \int_{\mathscr{C}_{x}} p_{Sx} dC_{x} + \int_{\mathscr{A}_{x}} v_{x} dA_{x},$$

$$\mathcal{P}_{y}(x) = \int_{\mathscr{C}_{x}} p_{Sy} dC_{x} + \int_{\mathscr{A}_{x}} v_{y} dA_{x},$$

$$\mathcal{P}_{z}(x) = \int_{\mathscr{C}_{x}} p_{Sz} dC_{x} + \int_{\mathscr{A}_{x}} v_{z} dA_{x},$$

$$\mathcal{M}_{x}(x) = \int_{\mathscr{C}_{x}} (y \, p_{Sz} - z \, p_{Sy}) dC_{x} + \int_{\mathscr{A}_{x}} (y \, v_{z} - z \, v_{y}) dA_{x},$$

$$\mathcal{M}_{y}(x) = \int_{\mathscr{C}_{x}} z \, p_{Sx} dC_{x} + \int_{\mathscr{A}_{x}} z \, v_{x} \, dA_{x},$$

$$\mathcal{M}_{z}(x) = -\int_{\mathscr{C}_{x}} y \, p_{Sx} \, dC_{x} - \int_{\mathscr{A}_{x}} y \, v_{x} \, dA_{x}.$$
(1.36)

Površinska obtežba \vec{p}_S na steber oblike I (glej enačbi (1.33) in (1.34)) je:

rob
$$z = -\frac{h}{2}$$
: $p_{Sx} = p_{Sz} k_t = \gamma_v (H - x) \frac{a}{b} k_t$,
 $p_{Sy} = 0$,
 $p_{Sz} = \gamma_v (H - x) \frac{a}{b}$
drugi robovi: $p_{Sx} = p_{Sy} = p_{Sz} = 0$

$$(1.37)$$

Prostorninska obtežba \vec{v} na steber oblike I je:

$$v_x = -\gamma_j, \quad v_y = v_z = 0.$$
 (1.38)

V enačbah (1.35) in (1.36) upoštevamo enačbe (1.37) in (1.38) ter določimo linijske obtežbe na steber oblike I:

$$\mathcal{P}_{x}(x) = \int_{-b/2}^{b/2} \gamma_{v} (H - x) \frac{a}{b} k_{t} dy + \int_{\mathcal{A}_{x}} -\gamma_{j} dA_{x} =$$

$$= \gamma_{v} (H - x) \frac{a}{b} k_{t} b - \gamma_{j} A_{x} = 9.8 (2 - x) \cdot 1 \cdot 0.12 - 76.5 \cdot 0.0038 = 2.061 - 1.176 x,$$

$$\mathcal{P}_{y}(x) = 0,$$

$$\mathcal{P}_{z}(x) = \int_{-b/2}^{b/2} \gamma_{v} (H - x) \frac{a}{b} dy = \gamma_{v} (H - x) a = 9.8 (2 - x) \cdot 1 = 19.6 - 9.8 x,$$

$$\mathbf{i}$$

$$\begin{aligned} \mathscr{M}_{x}(x) &= \int_{-b/2}^{b/2} y \,\gamma_{v} \left(H - x\right) \frac{a}{b} \, dy = 0, \\ \mathscr{M}_{y}(x) &= -\int_{-b/2}^{b/2} \frac{h}{2} \,\gamma_{v} \left(H - x\right) \frac{a}{b} \, k_{t} \, dy + \int_{\mathscr{A}_{x}} z \left(-\gamma_{j}\right) dA_{x} = \\ &= -\frac{h}{2} \,\gamma_{v} \left(H - x\right) a \, k_{t} = -0.10 \cdot 9.8 \left(2 - x\right) \cdot 1 \cdot 0.12 = -0.235 + 0.118 \, x, \\ \mathscr{M}_{z}(x) &= \int_{-b/2}^{b/2} y \,\gamma_{v} \left(H - x\right) \frac{a}{b} \, k_{t} \, dy - \int_{\mathscr{A}_{x}} y \left(-\gamma_{j}\right) dA_{x} = 0. \end{aligned}$$

Linijska obtežba je torej

 $\vec{\mathscr{P}}(x) = (2.061 - 1.176 \, x) \, \vec{e}_x + (19.6 - 9.8 \, x) \, \vec{e}_z,$

linijska momentna obtežba pa je

$$\vec{\mathcal{M}}(x) = (-0.235 + 0.118 \, x) \, \vec{e}_y.$$

1.2.4 Kinematične enačbe

Deformiranje različno obteženih nosilcev lahko analiziramo na osnovi eksperimentalnih rezultatov. Na sliki 1.7 prikazujemo eksperiment, ki ga je opravil Galileo leta 1638[†]

SLIKA 1.7: Galileov eksperiment na nosilcu

<∎

[†] J. F. Bell, The Experimental Foundations of Solid Mechanics, (Mechanics of Solids, ed. C. Truesdell, Volume I, Springer– Verlag, 1984). Galileo Galilei, italijanski astronom in fizik, 1564-1642.

Če je ravni nosilec tako obtežen, da je torzijski zasuk ω_x okrog vzdolžne osi nosilca enak nič

$$\omega_x \equiv \omega_{yz} = 0. \tag{1.39}$$

lahko ugotovimo, katere deformacije so prevladujoče in katere zanemarljive. Če na linijski nosilec narišemo pravokotno mrežo in ga obtežimo tako, da se ne pojavijo zasuki ω_x okrog vzdolžne osi, ugotovimo, da pride do opaznih sprememb dolžin vzdolžnih vlaken, spremembe prečnih dimenzij nosilca in spremembe pravih kotov pa so zanemarljivo majhne (slika 1.8).

Na osnovi rezultatov eksperimentalnih preiskav ugotovimo, da je različna od nič le specifična sprememba ε_{xx} v vzdolžni smeri, preostale deformacije pa so zanemarljive

SLIKA 1.8: a) Pravokotna mreža na nosilcu pred deformiranjem b) Mreža po deformiranju nosilca

Enačbe (1.40) vstavimo v kinematične enačbe [†]

$$\frac{\partial \vec{u}}{\partial x} = \vec{\varepsilon}_x + \vec{\omega} \times \vec{e}_x = \varepsilon_{xx} \, \vec{e}_x + \varepsilon_{xy} \, \vec{e}_y + \varepsilon_{xz} \, \vec{e}_z + \omega_{xy} \, \vec{e}_y + \omega_{xz} \, \vec{e}_z,
\frac{\partial \vec{u}}{\partial y} = \vec{\varepsilon}_y + \vec{\omega} \times \vec{e}_y = \varepsilon_{yx} \, \vec{e}_x + \varepsilon_{yy} \, \vec{e}_y + \varepsilon_{yz} \, \vec{e}_z + \omega_{yx} \, \vec{e}_x + \omega_{yz} \, \vec{e}_z,$$
(1.41)

$$\frac{\partial \vec{u}}{\partial z} = \vec{\varepsilon}_z + \vec{\omega} \times \vec{e}_z = \varepsilon_{zx} \, \vec{e}_x + \varepsilon_{zy} \, \vec{e}_y + \varepsilon_{zz} \, \vec{e}_z + \omega_{zx} \, \vec{e}_x + \omega_{zy} \, \vec{e}_y$$

<∎

in zapišemo v skalarni obliki

$$\frac{\partial u_x}{\partial x} = \varepsilon_{xx},$$
(1.42)

$$\frac{\partial u_x}{\partial y} = \varepsilon_{yx} + \omega_{yx} = -\omega_z, \tag{1.43}$$

[†] M. Stanek, G. Turk, Osnove mehanike trdnih teles, Univerza v Ljubljani, FGG, 1998.

$$\frac{\partial u_x}{\partial z} = \varepsilon_{zx} + \omega_{zx} = \omega_y, \tag{1.44}$$

$$\frac{\partial u_y}{\partial x} = \varepsilon_{xy} + \omega_{xy} = \omega_z, \tag{1.45}$$

$$\frac{\partial u_y}{\partial y} = \varepsilon_{yy} = 0, \tag{1.46}$$

$$\frac{\partial u_y}{\partial z} = \varepsilon_{zy} + \omega_{zy} = -\omega_x = 0, \qquad (1.47)$$

$$\frac{\partial u_z}{\partial x} = \varepsilon_{xz} + \omega_{xz} = -\omega_y, \tag{1.48}$$

$$\frac{\partial u_z}{\partial y} = \varepsilon_{yz} + \omega_{yz} = \omega_x = 0, \tag{1.49}$$

$$\frac{\partial u_z}{\partial z} = \varepsilon_{zz} = 0. \tag{1.50}$$

Iz enačb (1.46) in (1.47) sledi, da je pomik u_y le funkcija x, saj sta odvoda $\partial u_y/\partial y$ in $\partial u_y/\partial z$ enaka nič. Iz enačb (1.49) in (1.50) ugotovimo isto za pomik u_z

$$\frac{\partial u_y}{\partial y} = \frac{\partial u_y}{\partial z} = 0 \quad \to \quad u_y = u_y(x), \qquad \frac{\partial u_z}{\partial y} = \frac{\partial u_z}{\partial z} = 0 \quad \to \quad u_z = u_z(x). \tag{1.51}$$

To pomeni, da lahko prečna pomika u_y in u_z poljubne točke prečnega prereza nosilca opišemo kar s pomiki vzdolžne težiščne osi (pomiki u_y in u_z vseh točk prečnega prereza so enaki). Če v enačbah (1.45) in (1.48) upoštevamo enačbi (1.51), dobimo

$$\omega_y = \omega_y(x), \qquad \omega_z = \omega_z(x). \tag{1.52}$$

Iz enačb $\varepsilon_{yy} = \varepsilon_{zz} = \varepsilon_{yz} = 0$ sledi, da prečni prerez \mathscr{A}_x ohrani obliko in velikost, iz enačb (1.52) (oziroma zaradi $\varepsilon_{xy} = \varepsilon_{xz} = 0$) pa sledi, da ostane raven. Prečni prerez \mathscr{A}_x se zasuče okrog osi y in z kot togo telo. Ravninski prečni prerezi ostanejo ravninski in pravokotni na vzdolžno os tudi po deformiranju nosilca. To lastnost imenujemo **Navierova hipoteza**.[†]

Za določitev vzdolžnega pomika u_x poljubne točke Q(x, y, z) glede na izbrano točko $T_0(x_0, 0, 0)$ moramo integrirati popolni diferencial pomika u_x od izbrane točke $T_0(x_0, 0, 0)$ na vzdolžni težiščni osi do poljubne točke $Q(x, y, z)^{\ddagger}$

$$\int_{T_0}^{Q} du_x = \int_{T_0}^{Q} \left(\frac{\partial u_x}{\partial x} dx + \frac{\partial u_x}{\partial y} dy + \frac{\partial u_x}{\partial z} dz \right).$$
(1.53)

[†] Claude Louis Marie Henri Navier, francoski inženir, 1785–1836.

[‡] M. Stanek, G. Turk, Osnove mehanike trdnih teles, Univerza v Ljubljani, FGG, 1998.

Zaradi enačb (1.42) do (1.44) sledi

$$u_x(x, y, z) = u_x(x_0, 0, 0) + \int_{T_0}^Q (\varepsilon_{xx} \, dx - \omega_z \, dy + \omega_y \, dz). \tag{1.54}$$

Integracijsko pot od T_0 do Q lahko pri integriranju totalnega diferenciala poljubno izberemo. Najlažje integriramo, če celotno pot razdelimo na odseke, vzporedne koordinatnim osem (slika 1.9).

SLIKA 1.9: Integriramo po odsekih $T_0 - T$, T - Q' in Q' - Q

Vzdolž odseka $T_0 - T$ je dy = dz = 0 in y = z = 0, vzdolž odseka T - Q' je dx = dz = 0 in z = 0, vzdolž odseka Q' - Q pa dx = dy = 0. To upoštevamo v enačbi (1.54) in dobimo

$$u_x(x,y,z) = u_x(x_0,0,0) + \int_{x_0}^x \varepsilon_{xx}(\bar{x},0,0) \, d\bar{x} - \int_0^y \omega_z(x,\bar{y},0) \, d\bar{y} + \int_0^z \omega_y(x,y,\bar{z}) \, d\bar{z}.$$
(1.55)

Če vpeljemo oznako za vzdolžni pomik v osi $u_x(x, 0, 0) = u(x)$

$$u(x) = u_x(x_0, 0, 0) + \int_{x_0}^x \varepsilon_{xx}(\bar{x}, 0, 0) \, d\bar{x}$$
(1.56)

in upoštevamo, da sta zasuka ω_y in ω_z le funkcija od x (enačba (1.52)), dobimo

$$u_x(x,y,z) = u(x) - \int_0^y \omega_z(x) \, d\bar{y} + \int_0^z \omega_y(x) \, d\bar{z} = u(x) - \omega_z(x) \, y + \omega_y(x) \, z. \tag{1.57}$$

Ker se pomika u_y in u_z po prečnem prerezu ne spreminjata (enačba (1.51)), zanju vpeljemo novi oznaki

$$u_y(x) \equiv v(x), \qquad u_z(x) \equiv w(x).$$
(1.58)

Ko oznaki (1.58) upoštevamo v enačbah (1.45) in (1.48), izrazimo zasuka ω_y in ω_z s pomikoma v in w osi nosilca

$$\omega_y = -\frac{dw(x)}{dx}, \qquad \omega_z = \frac{dv(x)}{dx}.$$
(1.59)

Pomik u_x poljubnega delca linijskega nosilca izrazimo s pomiki osi nosilca, če (1.59) upoštevamo v (1.56)

$$u_x(x, y, z) = u(x) - \frac{dv(x)}{dx}y - \frac{dw(x)}{dx}z.$$
(1.60)

Deformacijo ε_{xx} izrazimo s pomiki delca na osi nosilca, če enačbo (1.60) vstavimo v (1.42)

$$\varepsilon_{xx} = \frac{du(x)}{dx} - \frac{d^2v(x)}{dx^2}y - \frac{d^2w(x)}{dx^2}z.$$
 (1.61)

Člena d^2v/dx^2 in d^2w/dx^2 določata linearni del ukrivljenosti deformirane osi nosilca. Enačba (1.61) predstavlja zvezo med vzdolžno deformacijo ε_{xx} vlakna v okolici obravnavanega delca ter med pomiki delca na osi nosilca. Iz enačb (1.60) in (1.61) sledi, da se pomik u_x in deformacije ε_{xx} po prečnem prerezau spreminjata linearno (slika 1.10).

SLIKA 1.10: Pomik u_x in deformacija ε_{xx} sta linearni funkciji koordinat y in z

1.2.5 Vzdolžna normalna napetost in enačbe za račun pomikov

Pri izpeljavi enačb (1.59), (1.60) in (1.61) predpostavimo enoosno deformacijsko stanje, kjer je le deformacija ε_{xx} različna od nič. Čeprav iz posplošenega Hookovega zakona za enoosno deformacijsko stanje sledi, da so vse tri normalne napetosti različne od nič

$$\sigma_{xx} = 2\,\mu\,\varepsilon_{xx} + \lambda\,\varepsilon_{xx} - \beta_T\,\Delta T - \beta_K\,\varepsilon_K, \quad \sigma_{yy} = \sigma_{zz} = \lambda\,\varepsilon_{xx} - \beta_T\,\Delta T - \beta_K\,\varepsilon_K, \tag{1.62}$$

pri izpeljavi enačb za pomike u, v in w osi nosilca ter enačbe za vzdolžno normalno napetost σ_{xx} predpostavimo enoosno napetostno stanje

$$\sigma_{xx} \neq 0, \tag{1.63}$$

$$\sigma_{yy} \approx \sigma_{zz} \approx \sigma_{xy} \approx \sigma_{yz} \approx \sigma_{zx} \approx 0. \tag{1.64}$$

Predpostavke (1.63) in (1.64) privzamemo zato, ker pripeljejo do enačb, ki so dovolj preproste za reševanje in dajejo dovolj dobre rezultate za inženirsko uporabo. Izraza za strižni napetosti σ_{xy} in σ_{xz} , katerih pri linijskem nosilcu ne smemo zanemariti, izpeljemo iz ravnotežnih enačb za delec (glej razde-lek 1.3). Teh enačb še namreč nismo upoštevali.

Vzdolžno normalno napetost σ_{xx} za upogib z osno silo izpeljemo, če v posplošenem Hookovem zakonu za deformacijo ε_{xx} [†]

$$\varepsilon_{xx} = \frac{1+\nu}{E} \,\sigma_{xx} - \frac{\nu}{E} \left(\sigma_{xx} + \sigma_{yy} + \sigma_{zz}\right) + \alpha_T \,\Delta T + \varepsilon_K$$

upoštevamo (1.64)

$$\varepsilon_{xx} = \frac{1}{E} \,\sigma_{xx} + \alpha_T \,\Delta T + \varepsilon_K. \tag{1.65}$$

Vzdolžno normalno napetost σ_{xx} izrazimo iz (1.65) in dobimo

$$\sigma_{xx} = E \left(\varepsilon_{xx} - \alpha_T \,\Delta T - \varepsilon_K \right). \tag{1.66}$$

Zaradi spremembe temperature okolice nosilca, se spremeni tudi temperatura nosilca. Ker so prečne dimenzije nosilca majhne v primerjavi z dolžino nosilca, običajno predpostavimo, da se temperatura nosilca po prečnem prerezu \mathcal{A}_x spreminja linearno

$$\Delta T(x, y, z) = \Delta T_x(x) + \Delta T_y(x) y + \Delta T_z(x) z.$$
(1.67)

Z ΔT je označena sprememba temperature poljubnega delca v nosilcu. Koeficienti ΔT_x , ΔT_y in ΔT_z se lahko vzdolž osi nosilca spreminjajo. Če je sprememba temperature enaka za vse prečne prereze nosilca, so ΔT_x , ΔT_y in ΔT_z konstante, katerih vrednosti določimo, če poznamo velikost spremembe temperature treh delcev v prečnem prerezu \mathscr{A}_x . Delci ne smejo ležati na isti premici. Enota ΔT_x je °C ali K, enota za ΔT_y in ΔT_z pa je °C/m ali K/m.

V nadaljevanju predpostavimo, da se deformacija ε_K zaradi krčenja ali nabrekanja materiala spreminja le v odvisnosti od koordinate x:

$$\varepsilon_K = \varepsilon_K(x).$$
 (1.68)

Pri nosilcu iz betona običajno vzamemo, da je deformacija ε_K odvisna le od časa t: $\varepsilon_K = \varepsilon_K(t)$. Enačbe (1.61), (1.67) in (1.68) vstavimo v (1.66) in dobimo:

$$\sigma_{xx} = E\left(\frac{du}{dx} - \frac{d^2v}{dx^2}y - \frac{d^2w}{dx^2}z - \alpha_T\left(\Delta T_x + \Delta T_y y + \Delta T_z z\right) - \varepsilon_K\right) = \\ = E\left(\left(\frac{du}{dx} - \alpha_T \Delta T_x - \varepsilon_K\right) - \left(\frac{d^2v}{dx^2} + \alpha_T \Delta T_y\right)y - \left(\frac{d^2w}{dx^2} + \alpha_T \Delta T_z\right)z\right).$$
(1.69)

[†] M. Stanek, G. Turk, Osnove mehanike trdnih teles, Univerza v Ljubljani, FGG, 1998.

Osno silo N_x in upogibna momenta M_y in M_z izrazimo s pomiki osi nosilca, če (1.69) vstavimo v (1.9) in (1.10)

$$N_x = E\left(\left(\frac{du}{dx} - \alpha_T \,\Delta T_x - \varepsilon_K\right) A_x - \left(\frac{d^2v}{dx^2} + \alpha_T \,\Delta T_y\right) S_z - \left(\frac{d^2w}{dx^2} + \alpha_T \,\Delta T_z\right) S_y\right), \quad (1.70)$$

$$M_y = E\left(\left(\frac{du}{dx} - \alpha_T \,\Delta T_x - \varepsilon_K\right) S_y + \left(\frac{d^2v}{dx^2} + \alpha_T \,\Delta T_y\right) I_{yz} - \left(\frac{d^2w}{dx^2} + \alpha_T \,\Delta T_z\right) I_y\right), \quad (1.71)$$

$$M_z = E\left(-\left(\frac{du}{dx} - \alpha_T \,\Delta T_x - \varepsilon_K\right)S_z + \left(\frac{d^2v}{dx^2} + \alpha_T \,\Delta T_y\right)I_z - \left(\frac{d^2w}{dx^2} + \alpha_T \,\Delta T_z\right)I_{yz}\right).$$
 (1.72)

V enačbah (1.70) – (1.72) smo uporabili oznake za geometrijske karakteristike prečnega prereza \mathscr{A}_x nosilca

$$A_{x} = \int_{\mathcal{A}_{x}} dA_{x},$$

$$S_{y} = \int_{\mathcal{A}_{x}} z \, dA_{x}, \qquad S_{z} = \int_{\mathcal{A}_{x}} y \, dA_{x},$$

$$I_{y} = \int_{\mathcal{A}_{x}} z^{2} \, dA_{x}, \qquad I_{z} = \int_{\mathcal{A}_{x}} y^{2} \, dA_{x}, \qquad I_{yz} = -\int_{\mathcal{A}_{x}} y \, z \, dA_{x}.$$
(1.73)

Pri tem A_x označuje ploščino prečnega prereza, S_y statični moment prečnega prereza glede na os y, S_z statični moment prečnega prereza glede na os z, I_y vztrajnostni moment prečnega prereza glede na os y, I_z vztrajnostni moment prečnega prereza glede na os z in I_{yz} deviacijski vztrajnostni moment prečnega prereza glede na os z in I_{yz} deviacijski vztrajnostni moment prečnega prereza glede na os z in I_{yz} deviacijski vztrajnostni moment prečnega prereza glede na os z in I_{yz} deviacijski vztrajnostni moment prečnega prereza glede na os y. Računanje geometrijskih karakteristik opišemo v razdelku 1.2.6.

Če sta osi y in z težiščni, sta statična momenta S_y in S_z enaka nič,[†] enačbe (1.70)–(1.72) se poenostavijo

$$N_x = E A_x \left(\frac{du}{dx} - \alpha_T \,\Delta T_x - \varepsilon_K \right), \tag{1.74}$$

$$M_y = E\left(\left(\frac{d^2v}{dx^2} + \alpha_T \,\Delta T_y\right)I_{yz} - \left(\frac{d^2w}{dx^2} + \alpha_T \,\Delta T_z\right)I_y\right),\tag{1.75}$$

$$M_z = E\left(\left(\frac{d^2v}{dx^2} + \alpha_T \,\Delta T_y\right)I_z - \left(\frac{d^2w}{dx^2} + \alpha_T \,\Delta T_z\right)I_{yz}\right). \tag{1.76}$$

[†] M. Stanek, G. Turk, Statika I, Univerza v Ljubljani, FGG, Ljubljana, 1996.

Iz enačb (1.74) do (1.76) izračunamo odvode pomikov

$$\frac{du}{dx} = \frac{N_x}{E A_x} + \alpha_T \,\Delta T_x + \varepsilon_K, \tag{1.77}$$

$$\frac{d^2 w}{dx} = \frac{1}{2} \frac{M}{M} \frac{I}{L} - \frac{M}{M} \frac{I}{L}$$

$$\frac{d^2 v}{dx^2} = \frac{1}{E} \frac{M_z I_y - M_y I_{yz}}{I_y I_z - I_{yz}^2} - \alpha_T \Delta T_y,$$

$$\frac{d^2 w}{dx^2} = -\frac{1}{E} \frac{M_y I_z - M_z I_{yz}}{I_y I_z - I_{yz}^2} - \alpha_T \Delta T_z.$$
(1.78)

Enačbe (1.77) in (1.78) določajo zveze med pomiki u, v, w, notranjimi silami N_x, M_y, M_z , spremembo temperature ΔT ter ε_K deformacijo krčenja ali nabrekanja. Te enačbe določajo Bernoulli–Eulerjevo teorijo upogiba.[‡] To so navadne diferencialne enačbe. Enačba (1.77) je prvega reda, enačbi (1.78) sta drugega reda.

Navadno izberemo koordinatne osi x, y, z tako, da se težiščni osi y in z ujemata z glavnima vztrajnostnima osema y_g, z_g prečnega prereza. Takrat je deviacijski vztrajnostni moment I_{yz} prečnega prereza \mathscr{A}_x enak nič (glej razdelek 1.2.6):

$$y \equiv y_g, \quad z \equiv z_g \quad \to \quad I_{yz} = 0.$$
 (1.79)

Enačbe (1.77) in (1.78) so takrat:

$$\frac{du}{dx} = \frac{N_x}{E A_x} + \alpha_T \,\Delta T_x + \varepsilon_K, \quad \frac{d^2 v}{dx^2} = \frac{M_z}{E I_z} - \alpha_T \,\Delta T_y, \quad \frac{d^2 w}{dx^2} = -\frac{M_y}{E I_y} - \alpha_T \,\Delta T_z.$$
(1.80)

Enačbe (1.80) določajo zveze med pomiki u, v, w, notranjimi silami N_x, M_y, M_z , spremembo temperature ter deformacije zaradi krčenja za primer, ko sta y in z glavni vztrajnostni osi prečnega prereza \mathscr{A}_x , ki se lahko vzdolž osi x spreminja. Navadna diferencialna enačba za pomik u (prva izmed (1.80)) je prvega reda, enačbi za pomika v in w (druga in tretja izmed (1.80)) sta drugega reda. Enačbe so linearne in nepovezane (nesimultane). V prvi nastopa u, v drugi v in v tretji w. Enačbe povezujejo pomike delcev na težiščni osi nosilca in notranje sile. Pri reševanju (integriranju) diferencialnih enačb moramo upoštevati **robne pogoje** za iskane funkcije u, v in w. Robni pogoji so odvisni od vrste podpor. Enačba za pomik uje prvega reda (v enačbi nastopa prvi odvod), zato za določitev funkcije u potrebujemo en robni pogoj. Preostali enačbi sta drugega reda, zato sta za račun pomikov v in w potrebna po dva robna pogoja.

Če sta osi y in z težiščni in glavni vztrajnostni osi, zapišemo upogibna momenta M_y in M_z s pomikoma v in w takole (glej enačbi (1.71) in (1.72)):

$$M_y = -E I_y \frac{d^2 w}{dx^2} - E I_y \alpha_T \Delta T_z,$$

$$M_z = E I_z \frac{d^2 v}{dx^2} + E I_z \alpha_T \Delta T_y.$$
(1.81)

[‡] Jacob (Jacques) Bernoulli, švicarski matematik in astronom, 1654–1705, Leonhard Euler, švicarski matematik in fizik, 1707–1783.

Prečni sili N_y in N_z zapišemo s pomikoma v in w, če v enačbah (1.31) upoštevamo (1.81)

$$N_{y} = -\frac{dM_{z}}{dx} - \mathscr{M}_{z} = -\frac{d}{dx} \left(E I_{z} \frac{d^{2}v}{dx^{2}} + E I_{z} \alpha_{T} \Delta T_{y} \right) - \mathscr{M}_{z},$$

$$N_{z} = \frac{dM_{y}}{dx} + \mathscr{M}_{y} = -\frac{d}{dx} \left(E I_{y} \frac{d^{2}w}{dx^{2}} + E I_{y} \alpha_{T} \Delta T_{z} \right) + \mathscr{M}_{y}.$$
(1.82)

Če se prečni prerez \mathscr{A}_x vzdolž osi x ne spreminja, zapišemo (1.82) takole:

$$N_{y} = -E I_{z} \frac{d^{3}v}{dx^{3}} - E I_{z} \alpha_{T} \frac{d(\Delta T_{y})}{dx} - \mathscr{M}_{z},$$

$$N_{z} = -E I_{y} \frac{d^{3}w}{dx^{3}} - E I_{y} \alpha_{T} \frac{d(\Delta T_{z})}{dx} + \mathscr{M}_{y}.$$
(1.83)

Enačbi (1.83) veljata za glavni vztrajnostni osi v težišču konstantnega prečnega prereza \mathscr{A}_x .

V nadaljevanju izpeljimo alternativno obliko enačb (1.80) za račun pomikov u, v in w (enačbe (1.80) veljajo za glavni vztrajnostni osi v težišču prečnega prereza). V ta namen jih zapišimo v obliki

$$E A_x \frac{du}{dx} = N_x + E A_x (\alpha_T \Delta T_x + \varepsilon_K),$$

$$E I_z \frac{d^2 v}{dx^2} = M_z - E I_z \alpha_T \Delta T_y,$$

$$E I_y \frac{d^2 w}{dx^2} = -M_y - E I_y \alpha_T \Delta T_z$$
(1.84)

ter prvo izmed enačb (1.84) enkrat odvajamo po x, drugo in tretjo enačbo pa dvakrat. Pri tem upoštevamo enačbe (1.30) in (1.31), ki povezujejo notranje sile in zunanjo obtežbo v prečnem prerezu ravnega nosilca

$$\frac{dN_x}{dx} = -\mathscr{P}_x, \qquad \frac{d^2M_z}{dx^2} = \mathscr{P}_y - \frac{d\mathscr{M}_z}{dx}, \qquad \frac{d^2M_y}{dx^2} = -\mathscr{P}_z - \frac{d\mathscr{M}_y}{dx}, \tag{1.85}$$

in dobimo diferencialno enačbo drugega reda za pomik u in diferencialni enačbi četrtega reda za pomika u in w:

$$\frac{d}{dx}\left(EA_{x}\frac{du}{dx}\right) = -\mathscr{P}_{x} + \frac{d}{dx}\left(EA_{x}\left(\alpha_{T}\Delta T_{x} + \varepsilon_{K}\right)\right),$$

$$\frac{d^{2}}{dx^{2}}\left(EI_{z}\frac{d^{2}v}{dx^{2}}\right) = \mathscr{P}_{y} - \frac{d\mathscr{M}_{z}}{dx} - \frac{d^{2}}{dx^{2}}(EI_{z}\alpha_{T}\Delta T_{y}),$$

$$\frac{d^{2}}{dx^{2}}\left(EI_{y}\frac{d^{2}w}{dx^{2}}\right) = \mathscr{P}_{z} + \frac{d\mathscr{M}_{y}}{dx} - \frac{d^{2}}{dx^{2}}(EI_{y}\alpha_{T}\Delta T_{z}).$$

$$(1.86)$$

Enačbe (1.86) veljajo tudi, če se prerez \mathscr{A}_x vzdolž osi nosilca spreminja. Osi y in z sta glavni vztrajnostni osi v težišču prečnega prereza. Če je prečni prerez konstanten, dobimo

$$\frac{d^2 u}{dx^2} = -\frac{\mathscr{P}_x}{E A_x} + \alpha_T \frac{d(\Delta T_x)}{dx} + \frac{d\varepsilon_K}{dx},$$

$$\frac{d^4 v}{dx^4} = \frac{1}{E I_z} \left(\mathscr{P}_y - \frac{d\mathscr{M}_z}{dx}\right) - \alpha_T \frac{d^2 (\Delta T_y)}{dx^2},$$

$$\frac{d^4 w}{dx^4} = \frac{1}{E I_y} \left(\mathscr{P}_z + \frac{d\mathscr{M}_y}{dx}\right) - \alpha_T \frac{d^2 (\Delta T_z)}{dx^2}.$$
(1.87)

Enačbe (1.87) veljajo, če sta y in z glavni vztrajnostni osi v težišču konstantnega prečnega prereza. Pri integriranju prve izmed enačb (1.87) potrebujemo dva robna pogoja, pri integriranju druge in tretje enačbe pa po štiri robne pogoje.

Pomike u, v, w lahko računamo po enačbah (1.80) ali po enačbah (1.87). Če uporabimo enačbe (1.80), moramo poznati potek notranjih sil. Če je konstrukcija statično nedoločena, jo moramo pri uporabi enačb (1.80) spremeniti v statično določeno in upoštevati še dodatne robne pogoje (glej primera 1.7 in 1.9). Računanje pomikov po enačbah (1.86) predstavlja metodo pomikov, ker ravnotežne enačbe (1.85) izrazimo s pomiki.

Vzdolžno normalno napetost σ_{xx} (1.69) izrazimo z notranjimi silami, če upoštevamo enačbe (1.77) in (1.78)

$$\sigma_{xx} = \frac{N_x}{A_x} - \frac{M_z I_y - M_y I_{yz}}{I_y I_z - I_{yz}^2} y + \frac{M_y I_z - M_z I_{yz}}{I_y I_z - I_{yz}^2} z.$$
 (1.88)

Če sta osi y in z glavni vztrajnostni osi, se (1.88) poenostavi

$$\sigma_{xx} = \frac{N_x}{A_x} - \frac{M_z}{I_z} y + \frac{M_y}{I_y} z.$$
(1.89)

Ker so notranje sile neodvisne od y in z, je potek normalne napetosti σ_{xx} po prečnem prerezu \mathscr{A}_x linearen.

1.2.6 Robni pogoji

Robne pogoje delimo na **kinematične** in **statične**. Kinematični robni pogoji predpišejo vrednosti za pomike in zasuke, statični pa za sile in momente.

Oglejmo si primer prostoležečega nosilca in konzole (slika 1.11). Vzemimo, da sta osi y in z glavni vztrajnostni osi ter, da so \mathcal{M}_y , ΔT in ε_K enaki nič!

Prostoležeči nosilec

Kinematični robni pogoji:

$$x = 0:$$
 $u(0) = 0$ in $w(0) = 0,$
 $x = L:$ $w(L) = 0.$

Statični robni pogoji:

$$x = 0: \quad M_y(+0) = 0,$$

$$x = L: \quad N_x(L-0) = 0, \qquad M_y(L-0) = 0.$$
(1.90)

Statične robne pogoje izrazimo s pomiki, če upoštevamo (1.80)

$$N_x = E A_x \frac{du}{dx}, \qquad M_y = -E I_y \frac{d^2w}{dx^2}.$$
(1.91)

Če (1.91) vstavimo v (1.90), sledi:

$$\begin{aligned} x &= 0: \quad \frac{d^2 w}{dx^2} \Big|_{(+0)} &= 0, \\ x &= L: \quad \frac{d u}{dx} \Big|_{(L-0)} &= 0, \qquad \frac{d^2 w}{dx^2} \Big|_{(L-0)} &= 0. \end{aligned}$$

Previsni nosilec (konzola)

Kinematični robni pogoji:

$$x = 0$$
: $u(0) = 0$, $w(0) = 0$, $\omega_y(0) = -\frac{dw}{dx}\Big|_{(0)} = 0$.

Statični robni pogoji:

$$x = L$$
: $N_x(L-0) = 0$, $M_y(L-0) = 0$, $N_z(L-0) = 0$. (1.92)

Statične robne pogoje izrazimo s pomiki, če v (1.92) upoštevamo (1.80) in (1.83)

$$N_x = E A_x \frac{du}{dx}, \qquad M_y = -E I_y \frac{d^2 w}{dx^2}, \qquad N_z = -E I_y \frac{d^3 w}{dx^3}.$$
 (1.93)

Če (1.93) vstavimo v (1.92), dobimo:

$$\frac{du}{dx}\Big|_{(L-0)} = 0, \qquad \frac{d^2w}{dx^2}\Big|_{(L-0)} = 0, \qquad \frac{d^3w}{dx^3}\Big|_{(L-0)} = 0.$$

Pri reševanju nalog iz mehanike trdnih teles velikokrat ni enostavno natančno upoštevati robne pogoje. Nalogo pogosto poenostavimo tako, da robne pogoje le približno izpolnimo in iščemo rešitev poenostavljene naloge. Pri tem upoštevamo **Saint-Venantov princip**,[†] ki pravi: Če obtežbo, ki deluje na delu mejne ploskve telesa zamenjamo z drugo statično enakovredno obtežbo, ki deluje na isti del mejne ploskve telesa, imata obe obtežbi enak mehanski učinek na dele telesa, ki so dovolj oddaljeni od obteženega dela mejne ploskve.

Enačbe (1.80) in (1.86) uporabimo tudi pri računanju pomikov u, v in w nosilca s spremenljivim prečnim prerezom \mathscr{A}_x . V tem primeru so A_x , I_y in I_z odvisni od x. Na sliki 1.12 prikazujemo tri primere nosilcev s spremenljivo višino. V vseh treh primerih os nosilca ni ravna.

SLIKA 1.12: Oblike nosilcev s spremenljivim prečnim prerezom

Vzdolžno normalno napetost σ_{xx} takih nosilcev računamo z enačbo (1.88). Pri tem upoštevamo, da so A_x , I_y , I_z in I_{yz} odvisni od x.

1.2.7 Geometrijske karakteristike prečnega prereza

Pri obravnavanju ravnega grednega nosilca konstantnega prečnega prereza \mathscr{A}_x definiramo izraze, ki so odvisni le od oblike in velikosti prečnega prereza nosilca:

$$A_{x} = \int_{\mathscr{A}_{x}} dA_{x},$$

$$S_{y} = \int_{\mathscr{A}_{x}} z \, dA_{x}, \qquad S_{z} = \int_{\mathscr{A}_{x}} y \, dA_{x},$$

$$I_{y} = \int_{\mathscr{A}_{x}} z^{2} \, dA_{x}, \qquad I_{z} = \int_{\mathscr{A}_{x}} y^{2} \, dA_{x}, \qquad I_{yz} = -\int_{\mathscr{A}_{x}} yz \, dA_{x},$$
(1.94)

 A_x označuje ploščino prečnega prereza, S_y statični moment prečnega prereza glede na os y, S_z statični moment prečnega prereza glede na os z, I_y vztrajnostni moment prečnega prereza glede na os y, I_z vztrajnostni moment prečnega prereza glede na os z in I_{yz} deviacijski vztrajnostni moment prečnega prereza glede na os z in I_{yz} deviacijski vztrajnostni moment prečnega prereza glede na os z in I_{yz} deviacijski vztrajnostni moment prečnega prereza glede na os y, I_z vztrajnostni moment prečnega prereza glede na os z in I_{yz} deviacijski vztrajnostni moment prečnega prereza glede na os z in I_{yz} deviacijski vztrajnostni moment prečnega prereza glede na os y in z. Ploščino merimo v m², statična momenta v m³, vztrajnostna in deviacijski moment pa v m⁴. V literaturi je deviacijski vztrajnostni moment včasih definiran z izrazom $I_{yz} = \int_{\mathscr{A}_x} yz \, dA_x$. Zato moramo pri uporabi vrednosti za deviacijski vztrajnostni moment iz različnih tabel najprej ugotoviti, kako je I_{yz} definiran. Tu smo I_{yz} definirali z negativnim predznakom zato, ker se v tem primeru vztrajnostni momenti I_y , I_z in I_{yz} transformirajo pri zasuku koordinatnega sistema po pravilih

[†] I.S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1956,

Adhémar Jean Claude Barré de Saint-Venant, francoski gradbeni inženir (1797-1886).

tenzorskega računa. Prikazane izraze največkrat vrednotimo za primere, ko je koordinatno izhodišče v težišču T_p prečnega prereza \mathscr{A}_x (slika 1.13). Koordinati težišča izračunamo po enačbah[†]

$$y_{T_p} = S_z / A_x, \qquad z_{T_p} = S_y / A_x. \tag{1.95}$$

$$\vec{y} = \underbrace{\begin{array}{c} & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & &$$

SLIKA 1.13: Koordinatno izhodišče je v težišču T_p prečnega prereza

Geometrijska karakteristika, ki je definirana z izrazom

$$I_p = \int_{\mathscr{A}_x} (y^2 + z^2) \, dA_x = \int_{\mathscr{A}_x} r^2 \, dA_x = I_z + I_y,$$

je polarni vztrajnostni moment prečnega prereza. Razen navedenih geometrijskih karakteristik prečnega prereza uporabljamo še vztrajnostna polmera (merimo ju v m), ki sta definirana z izrazoma

$$i_y = \sqrt{\frac{I_y}{A_x}}, \qquad i_z = \sqrt{\frac{I_z}{A_x}}.$$

Vzporedna premaknitev koordinatnega sistema

Oglejmo si prečni prerez \mathscr{A}_x in izberimo na njem dve poljubni točki O in \overline{O} . Skozi točko O potekata osi y in z, skozi točko \overline{O} pa osi \overline{y} in \overline{z} . Os y je vzporedna z osjo \overline{y} , os z je vzporedna z osjo \overline{z} (slika 1.14).

T je poljubna točka prečnega prereza \mathscr{A}_x . Koordinati y, z točke T sta

$$y = \bar{y} + y_{\bar{O}}, \qquad z = \bar{z} + z_{\bar{O}}.$$

Osna vztrajnostna momenta glede na os y in z lahko izrazimo takole:

$$\begin{split} I_y &= \int\limits_{\mathcal{A}_x} z^2 \, dA_x = \int\limits_{\mathcal{A}_x} \bar{z}^2 \, dA_x + 2 \, z_{\bar{O}} \int\limits_{\mathcal{A}_x} \bar{z} \, dA_x + z_{\bar{O}}^2 \int\limits_{\mathcal{A}_x} dA_x, \\ I_z &= \int\limits_{\mathcal{A}_x} y^2 \, dA_x = \int\limits_{\mathcal{A}_x} \bar{y}^2 \, dA_x + 2 \, y_{\bar{O}} \int\limits_{\mathcal{A}_x} \bar{y} \, dA_x + y_{\bar{O}}^2 \int\limits_{\mathcal{A}_x} dA_x \end{split}$$

[†] M. Stanek, G. Turk, Statika I, Univerza v Ljubljani, FGG, Ljubljana, 1996.

SLIKA 1.14: Koordinatna os y je vzporedna osi \bar{y} , koordinatna os z pa osi \bar{z}

oziroma

$$I_{y} = I_{\bar{y}} + 2 z_{\bar{O}} S_{\bar{y}} + z_{\bar{O}}^{2} A_{x},$$

$$I_{z} = I_{\bar{z}} + 2 y_{\bar{O}} S_{\bar{z}} + y_{\bar{O}}^{2} A_{x}.$$
(1.96)

Za deviacijski vztrajnostni moment glede na osi y in z dobimo

$$I_{yz} = -\int_{\mathscr{A}_x} y \, z \, dA_x = -\int_{\mathscr{A}_x} (\bar{y} \, \bar{z} + y_{\bar{O}} \, \bar{z} + z_{\bar{O}} \, \bar{y} + y_{\bar{O}} \, z_{\bar{O}}) \, dA_x$$

oziroma

$$I_{yz} = I_{\bar{y}\bar{z}} - y_{\bar{O}} S_{\bar{y}} - z_{\bar{O}} S_{\bar{z}} - y_{\bar{O}} z_{\bar{O}} A_x.$$
(1.97)

Uporabili smo oznake

$$I_{\bar{y}} = \int_{\mathscr{A}_x} \bar{z}^2 \, dA_x, \quad I_{\bar{z}} = \int_{\mathscr{A}_x} \bar{y}^2 \, dA_x, \quad I_{\bar{y}\bar{z}} = -\int_{\mathscr{A}_x} \bar{y} \, \bar{z} \, dA_x, \quad S_{\bar{y}} = \int_{\mathscr{A}_x} \bar{z} \, dA_x, \quad S_{\bar{z}} = \int_{\mathscr{A}_x} \bar{y} \, dA_x.$$

Enačbe (1.96) in (1.97) predstavljajo Steinerjevo[†] pravilo za določanje vztrajnostnih momentov pri vzporedni premaknitvi koordinatnega sistema.

Če je izhodišče \overline{O} koordinatnega sistema $\overline{y}, \overline{z}$ v težišču T_p prečnega prereza, potem oznaki $\overline{y}, \overline{z}$ zamenjamo z y_T in z_T , oznaki $y_{\overline{O}}$ in $z_{\overline{O}}$ pa z y_{Tp} in z_{Tp} (slika 1.15).

Ker sta statična momenta prečnega prereza na težiščni osi enaka nič, zapišemo vztrajnostna momenta I_y in I_z ter deviacijski vztrajnostni moment I_{yz} glede na osi y in z takole:

$$I_y = I_y^T + z_{T_p}^2 A_x, \qquad I_z = I_z^T + y_{T_p}^2 A_x, \qquad I_{yz} = I_{yz}^T - y_{T_p} z_{T_p} A_x.$$
(1.98)

Pri pisanju enačb (1.98) smo z oznako "T" pri vztrejnostnih in deviacijskem momentu povdarili, da količine I_y^T , I_z^T in I_{yz}^T računamo glede na težiščni osi y_T , z_T prečnega prereza \mathscr{A}_x . Iz enačb (1.98) sledi, da sta vztrajnostna momenta I_y^T in I_z^T manjša od vztrajnostnih momentov I_y in I_z glede na poljubni vzporedno premaknjeni osi y, z.

[†] Jacob Steiner, švicarski matematik, profesor opisne geometrije, 1796–1863. Zanimivost: pisati se je naučil pri 14 letih, šolo je začel obiskovati, ko mu je bilo 18 let.

SLIKA 1.15: Koordinatni osi y_T in z_T potekata skozi težišče T_p prečnega prereza

Zasuk koordinatnega sistema

Sedaj si oglejmo vztrajnostne momente glede na dva med seboj zavrtena koordinatna sistema $y, z \text{ in } \eta, \zeta$, ki imata skupno koordinatno izhodišče v poljubni točki O. Kot med osjo y in osjo η označimo z α (slika 1.16). Zvezo med koordinatami poljubne točke T v obeh koordinatnih sistemih podajata enačbi (slika 1.16)

SLIKA 1.16: Koordinatna os η je glede na os y zasukana za kot α

Osna vztrajnostna momenta in deviacijski vztrajnostni moment glede na osi η in ζ izračunamo z enačbami:

$$I_{\eta} = \int_{\mathscr{A}_{x}} \zeta^{2} dA_{x} = I_{z} \sin^{2} \alpha + 2I_{yz} \sin \alpha \cos \alpha + I_{y} \cos^{2} \alpha,$$
$$I_{\zeta} = \int_{\mathscr{A}_{x}} \eta^{2} dA_{x} = I_{z} \cos^{2} \alpha - 2I_{yz} \sin \alpha \cos \alpha + I_{y} \sin^{2} \alpha,$$