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Abstract
Compared to other structural materials, such as steel and concrete, structural timber has a 
considerably higher variability of the strength properties both within and between 
members. The variability within a timber member is not considered in engineering 
design, where each member is treated under the assumption that it is homogeneous, i.e. 
the strength is assumed to have a constant low value along the member. The advantage 
of the low probability that high stresses coincide with low strengths is however not 
accounted for and may give an extra safety margin. The strength of timber members will, 
due to their inhomogeneous nature, be dependent on both the length of the member and 
the type of loading. For structures with pronounced moment peaks such as roof trusses, 
an important increase in safety could therefore be expected. 
 
A method, which accounts for the interaction of normal and transversal forces on a 
member is used to determine the degree of utilization in any section along a member. 
The effect of buckling is included in the interaction. The suggested equations have the 
advantage to be linear which minimizes the necessary calculations in this study. 
 
Monte Carlo simulations were performed to study the utilization of a roof truss of W-
type. The between and within member variation of bending strength is modelled based 
on stochastic variables such as distance between weak sections, length of weak sections, 
strength of weak sections and strength between weak sections. The results show a 
significant system effect due to within member variability of bending strength in timber 
structures such as trussed rafters. The effect is larger in less homogenous timber as e.g. 
Radiata pine than in Norway spruce that has less variability in the strength properties. 
 
Furthermore, a reliability study of the roof truss was carried out and the system effect 
was quantified. 
 
The other system studied is a sheathed parallel timber beam structure (e.g. a floor 
structure or a roof element). In engineering design a system effect factor is introduced 
taking probabilistic and structural load sharing into account. A parameter study of the 
system was done to determine the sensibility for parameters such as number of beams in 
the system, centre-to-centre distance of the timber beams and length of span. A 
calibration of the code format was performed where the code format and the 
probabilistic format was combined. The system effect due to the difference in coefficient 
of variation in the single timber beams and the system was quantified. Further studies 
have to be done to determine the system effect factor that can be used in the code. 
 
 
 
 
 
Key words: Structural timber, roof truss, reliability, variability, system effect, safety 
index, combined stress index, Monte Carlo simulation, first order reliability method. 
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1 Introduction

1.1 Background
Trees have during evolution specialized in resisting its natural environment e.g. to stand 
snow and wind loads. In sawn timber the conditions for the wood material differ 
compared to the living tree. The branches that collected the sunshine for the 
photosynthesis are now forming knots with locally disturbed grain directions and are 
seen as defects in design of timber structures. 
 
The research concerning reliability of timber structures is fairly young. The natural 
defects in structural timber arise special issues that in particular must be addressed in 
reliability studies: 

• The variability of the strength properties is large. 
• Difficulties in predicting some failure modes. Strength grading of structural 

timber may consequently be inaccurate for some of the failure modes.  
• The knowledge of the variability is not documented to the same extent as 

competitive materials. 
 
The safety factors have to be set relatively high, due to these special issues that affects 
the competitiveness of timber compared to other building materials. Different research 
projects have been initiated to deal with these questions. 
Distributing the defects naturally existing in wood can reduce the variability of wood 
products. This reduction of variability is found in products such as glulam and laminated 
veneer lumber (LVL).  
With better predictions of the strength properties new methods for structural timber 
design may open. The optimisation problem in design would be more adequate and the 
properties of the timber could be matched to the strength needed. This may be possible 
e.g. for prefabricated roof-trusses with punched metal plates. 
Another way is to improve the knowledge of the material e.g. how the variability 
influences the reliability. This is always important, as many countries continuously 
revise their codes taking all available information into account.  

1.2 Objective
The main objective with this thesis is to increase the understanding of the variability of 
the strength properties on the reliability of timber structures. 

1.3 Limitations
The studied species are Spruce (Picea Abies) and for comparison Radiata pine. The 
studied failure mode has been failure caused by bending moment combined with axial 
force. Failure modes such as failure of joints, shear failure and so forth have not been 
given any attention. For the roof structures load sharing between the trusses was not 
considered.  
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Furthermore, the uncertainty of the wood strength was accounted for but the variability 
of the stiffness within the members or in the connections was not considered in the 
studied roof truss. 

1.4 Outline of the thesis
This thesis consists of, a state of art review, a short summary of the results and 
conclusions from the papers and three appended papers. The state of the art review is 
divided into eight chapters: 

• Reliability in timber structures. 
• Variability of the stiffness and strength properties in structural timber. 
• Length and load configuration effects. 
• System effect. 
• Floors of sheathed parallel timber beams. 
• Roof trusses. 
• Probabilistic methods for structural reliability. 
• The KB-method and the combined stress index. 

2 State of the art review

2.1 Background
Probabilistic methods are the basis of all modern design codes. The purpose of 
reliability-based design is the systematic consideration of all the uncertainties involved 
in the design process. The uncertainties could for example be found in the expected 
loads, the strength estimation and the models used.  
Probabilistic analyses of structures can be done at different levels. According to Thoft-
Christensen and Baker (1982) the three levels of structural reliability analysis and 
methods of design are: 
Level 3: The “exact” probability of failure is determined using full probabilistic 

description. 
Level 2:  Iterative calculations with an idealisation of the failure domain and simplified 

representation of the variables.  
Level 1:  Design methods using partial safety factors related to characteristic values of 

the actions and resistance variables. 
The codes of today are at Level 1 where the partial safety factors are determined on the 
basis of a Level 2 analysis.  
Compared to other building materials the following differences are typical for timber 
structures: 

• Significant within member variability of strength and stiffness properties. This 
means an apparent volume effect. The high anisotropy of the material makes 
the effect even more delicate to describe. 

• The time dependent behaviour known as duration of loads (DOL). 
• The influence of moisture state on strength. 
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2.2 Reliability in timber structures
During the last decades the international research community has been dealing quite 
extensively with safety and reliability of timber structures. Much work has been initiated 
in connection with the introduction of limit state design in many countries around the 
world. 
Important and extensive work was done in Canada when the code was updated to 
modern limit state design. A documentation of this work is found in Foschi et. al. (1989). 
The work is based on the conditions found in Canada. For example the wood species 
used as a basis are Douglas-Fir, Hemlock and the Spruce-pine-fir mix and the three 
strength classes used are SS, No. 2 and No. 3. As the species and the strength classes are 
different in Europe the results can not directly be transformed into European codes. 
 
An international NATO workshop initiated by the United States was held in Florence 
1991 (Bodig, 1992) with the title “Reliability-based design of Engineered wood 
structures”. The objectives with the workshop were to review the state of the art on 
reliability-based design and define the development needed with special emphasis on 
internationally harmonized codes for timber structures. 
 
A European seminar was held in Paris in 1997 (Adjanohoun et. al., 1997) with the 
purpose to gather scientific information and propose guidelines for the implementation 
of a fully probabilistic design code of timber structures.  
 
A study by Thelandersson et. al. (1999) shows that even if the reliability index is 
apparently lower for the Canadian code, the safety and the reliability of the structure is 
the same as found in the European codes due to the differences in the load descriptions, 
reference time and the calibration done. Further the following was pointed out in 
Thelandersson et. al. (1999) as areas in which more research is needed: 

• Method for reliability research and how to interpret different results. This 
should be done using reliability based design in a predetermined way. The 
target reliability index should be in unison in the European countries. 

• The importance of the choice of the distribution function for the strength 
properties of the material. 

• Strength dependency of the load history. 
• The strength dependency of the moisture and the moisture history. Research 

where the moisture content variation and the stresses introduced by uneven 
moisture distribution is taken into account.  

• System effects and multiple failure modes. 
• Serviceability limit states where deformation and vibration are analysed with 

reliability based methods. 
 

2.3 Variability of stiffness and strength in structural timber
Since the 1920’s until fairly recently (about 1980) the strength of a timber member was 
determined from the “clear-wood” strength (Madsen, 1992). The commercial timber, 
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however, does not have the same properties as clear wood at all. Today the strength 
capacity is determined from direct testing of structural timber, so called ingrade testing. 
 
The variability between individual timber elements is significantly larger than those 
found for steel or reinforced concrete members. The coefficient of variation (COV) for 
strength properties of structural timber is 20 – 40 % where the higher value is found for 
brittle failure modes. The variability may also differ between wood species. 
 
The lengthwise variation of the modulus of elasticity has been studied since the mid-
sixties. The within variability of bending stiffness was modelled by Czmoch (1991, 
1998) as a stationary random process. He used two models, one with random bending 
stiffness variation around a global mean for the whole population of beams. In the other 
model a variable mean was used for every beam and a stationary random process 
expressed the local fluctuation within a beam. 
 
The variability of tensile strength parallel to the grain has been studied for example by 
Showalter et al. (1987) and Lam and Varoglu (1991a,b) with both experiments and 
mathematical models. 
 
Riberholt and Madsen (1979) presented a model of the lengthwise bending strength. This 
model is based on a constant bending strength between defects, see Figure 1. The clear 
wood strength and the strength in weak zones are described by stochastic variables. A 
Poisson process describes the occurrence of a weak section. 
 
 
 Timber beam with defects 

Hypothetical strength variation 

Idealised strength variation 

weak zone strength 

clear wood strength 

 
Figure 1: Modelling of strength variation. Riberholt et. al. (1979). 
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The model was further used by Czmoch, Thelandersson and Larsen (1991) in a study of 
load configuration and length effects. They suggested further investigations to get the 
input data to the model. 
 
Källsner and Ditlevsen (1994) presented a study on the variability of bending strength. 
Weak sections were cut out from 26 beams and were finger jointed to pieces of wood 
with expected higher strength. In total, 197 tests were carried out. Unfortunately, only 34 
percent of the failures were bending failure in the weak zone (most of the failures 
occurred in the finger joints). A statistical model was developed to model the bending 
strength variation. The model was later improved to also include the failure of the finger 
joint. Furthermore the experimental verification was done in three phases. The first 
phase contained experiments with single weak zones. Phase two was performed for long 
beams containing several weak zones. The third phase studied the interaction between 
weak zones. The verification indicates that the bending strength was lower than the 
predicted strength from the model. The reasons for this may be statistical uncertainty, 
release of stored elastic energy during the test and possible interaction between weak 
zones, Källsner, Ditlevsen and Salmela (1997), Källsner and Ditlevsen (1998, 1999). 
 
In Isaksson (1999) a statistical model of the variability of the bending strength both 
between and within timber beams is described. The model is based on an experimental 
investigation of 130 timber beams of spruce (Picea Abies) where every beam was tested 
in 5-7 weak sections. The model is built up by the following parameters: 

• Distance between weak sections. 
• Width of weak sections. 
• Bending strength of weak sections. 
• Bending strength between weak sections. 

 
By measuring the knot size and their position, the weak sections were identified. The 
distribution and length of the knot clusters determined the distance between and the 
width of weak sections. The length of weak sections showed good agreement with the 
gamma distribution. The correlation coefficient between weak sections was found to be 
independent of the distance between the sections. 
The bending strength of weak sections within and between timber beams was written as 
an exponential function: 

( )ijiijf ετµ ++= exp  ( 1 ) 
where 
fij is the bending strength of  beam i in section j, 
µ is the logarithm mean of all weak sections, 
τi is the difference between the logarithm mean of weak sections within one 

member i and µ. The mean equals zero and the standard deviation is σi, 
εij is the difference between weak section j in beam i and the value µ + τi. The 

mean equals zero and the standard deviation is σj. 
The model is illustrated in Figure 2. 
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The input to the model is summarised in Table 1. The model for Radiata Pine was based 
on data found in Leicester et. al. (1996). 

Table 1: Input to the model of variability in bending strength. (Isaksson 1999). 

 Model 
Parameter Norway spruce, 

LN50 
Norway spruce, 

LN50Step 
Radiata Pine, 

LNRP 
Distance [mm] Gamma(2.5445, 

194.12) 
Gamma(2.5445, 

194.12) 
Exp(1, 1300) 

Width [mm] 150 - 150 
Weak section strength 
[MPa] 

LogN(4.01977, 
0.247136) 

LogN(4.01977, 
0.247136) 

LogN(3.75443, 
0.38523) 

Coeff. of corr. between 
weak section strength 0.565 0.565 0.55 

Strong section strength greatest weak  
section strength 

- greatest weak  
section strength 

2.4 Length and load configuration effects
Since timber is treated as a homogeneous material by using the characteristic value in 
ordinary engineering design, the apparent strength of the element will be dependent on 
the loaded volume. The volume effect is often divided into two parts namely length and 
load configuration effect. 

    f ij   

τ i   

µ   

ε ij 

Longitudinal direction of the beam  

B
en
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ng

 st
re

ng
th

  

Figure 2: Modelling of longitudinal variation of bending strength. 
Isaksson (1999). 
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The length (or size) and load configuration effect for tension and bending failures is 
often described by the Weibull theory (Weibull 1939a,b). The theory claims that a chain 
is as strong as its weakest link. If the material is brittle and a reference volume is 
subjected to pure tension (stress σ) the probability of failure, pf, can be written as: 

)()( σσ FRPp f =≤=  ( 2 ) 
where F() is the statistical probability distribution of the strength, R, of the material. 
When the strength belongs to a three-parameter Weibull distribution the probability of 
failure becomes: 

k

a
b

f ep

1

1
�
�

�
�
�

� −−
−=

σ

 ( 3 ) 

where 
a is the scale parameter, 
b is the location parameter, 
k is the shape parameter. 
It can be shown that the following relationship will apply between two volumes V, if the 
location parameter b is set zero. 
 

k

V
V

��
�

�
��
�

�
=

2

1

1

2

σ
σ  ( 4 ) 

 
where σ1 and σ2  are the stresses causing failure for volume V1 and V2 respectively. There 
is a higher probability that a defect appears within a larger volume. This results in a 
lower strength for the larger volume. The shape parameter, k, is found in several 
experimental investigations to be in the interval 0.1 to 0.2 see e.g. Table 2 from Isaksson 
(1999). 

Table 2: Length effect. Beam loaded with constant bending moment. Isaksson (1999). 

Length, L [m] Mean [MPa] Stand. dev. [MPa] 
2.2 49.78 11.99 
3.2 47.77 11.22 
4.2 46.69 10.99 

 
Codes (e.g. Eurocode 5), however, use the depth of the timber beam as a parameter to 
account for size effect. This may give problems in the design procedure as the length in 
most cases is known and the depth has to be determined (Madsen, 1991). 
 
The load configuration effect is similar to the length effect and refers to the fact that the 
apparent strength depends on the distribution of e.g. bending moment along the member. 
The equation for the load configuration effect will be similar to Equation ( 4 ), see for 
example Isaksson (1999). The more pronounced the peak of the bending moment, the 
higher is the effect. Table 3 based on experimental data from Isaksson (1999) shows the 
results of the load configuration effect for three load cases shown in Figure 3. The effect 
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is also illustrated in Figure 4 where a beam is loaded with uniform transversal load, q, 
and constant bending moment, M. 
 
 

P 

q

M M 

L 

 
Figure 3: Load configurations. Isaksson (1999). 

 

Table 3: Load configuration effect. (Reference length 4.2 meter). Isaksson (1999).  

Load configuration (see Figure 3) Mean [MPa] Stand. dev.  [MPa] 
Constant bending moment, M 46.05 10.83 
Uniform transversal load, q 50.57 12.16 
Concentrated point load, P 53.74 12.30 
 
A summary of size and load configuration effects can also be found in Madsen (1992). 
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Figure 4: Evaluation of bending strength for different load configurations.  

q uniformly distributed load and M constant bending moment. 

2.5 System effect
According to Foschi et.al. (1989), system effects can be attributed to two different 
causes: 

• Probabilistic load sharing based on the smaller probability that a weak section 
coincides with the position of the highest stress.  

• Structural load-sharing, due to redistribution of forces within the system. 
 

Structures are usually redundant systems, i.e. given the first failure of some part of the 
system, the structure as a whole will not necessarily fail. It is often hard to establish the 
failure criterion/criteria of a redundant system made of structural timber. Therefore the 
criteria are often given in more or less vague forms, for example “a failure occurs when 
the building does not maintain its primary functions” (Bodig, 1992). 

  fq 

  fM 

Longitudinal direction of the beam 
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2.5.1 Series and parallel systems
Series systems, illustrated in Figure 5, have the good feature that the reliability is 
independent of the load path. A series system can be described with the weakest link 
theory i.e. the weakest link determines the strength of the whole system. Assuming 
perfect series systems give an upper bound for probability of failure. If Xi is the strength 
of the component i, in a system containing n elements, the system strength can be written 
as 

{ }i

n

in XR
1

min
=

=  ( 5 ) 

and the probability of failure  
( )0≤−= SRPp nf  ( 6 ) 

where S is the load effect. 
 
In series systems in which the load uncertainty is much greater than the resistance 
uncertainty, the risk of failure mainly depends on whether a certain load level is 
exceeded or not whereas the number of links in the weakest-link series is unimportant 
(Sundararajan, 1995). 
 

 
Figure 5: Examples of series systems. 
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More interesting, for structural purposes, but also more complicated is the parallel 
system. A perfect parallel system with equal load sharing and brittle failure theoretically 
has the following system strength (Bodig 1992): 

( ){ }i
n

in XinR 1max
1

+−=
=

 ( 7 ) 

where Xi is the strength of the component i and X1 ≤…≤ Xn. 
If the elements in the system are ideally elastic-plastic and the load can be shared in such 
a way that every element will reach its maximum strength, the system strength is given 
by: 

{ }i

n

in XR
1=

Σ=  ( 8 ) 

 
Nearly all structures are in between these bounds of probability of failure that the series 
and parallel systems create, see Figure 6. Bounds for the probability of failure are often 
used for structures with (potential) multiple failure modes, which is the case for most 
structures. To calculate the theoretical “true” probability of failure is, for most cases, a 
very difficult task. 

 
 

1 
2 

3 
4 

5 
6 

1 

2 

3 

4 

5 

6  
Figure 6: Example of combined series and parallel system. If only element 1-6 can 

fail in the truss the structure can be modeled as the figure below. 
Thoft-Christensen et. al. (1982) 

2.6 Floors of sheathed parallel timber beams
One of the most common parallel systems is the sheathed parallel beam system used as a 
floor structure or a roof element. The system consists of two or more parallel timber 
beams with a sheathing of for example plywood board. To analyse the behaviour of a 
wood-joist system, McCutcheon (1977, 1984) proposed an analogy with a beam-spring 
model. The model also includes non-linear behaviour of the wood joists. Tremblay et. al. 
(1976) developed a non-linear model to take the inter layer slip into account for T-
beams. The model was verified against 16 full tests and the agreement in the deflection 
was in general good up to and beyond the service load range. Another finite element 
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description has been proposed by e.g. Thompson et. al. (1975, 1977) with improvements 
by Foschi (1982). This linear model accounts for factors such as composite action, 
lateral and torsional joist deformation, interlayer slip and clearance between boards in 
the sheathing. 
Foschi et. al. (1989) used this improved model to calibrate the system effect factor for 
systems used in the Canadian code. For this reliability study the statistical variables are 
shown in Table 4. 
 
Table 4: Statistical input for calibration of the system effect factor.  
               Foschi et. al. (1989). 

Variable Distribution 
Dead load Normal 
Live load Extreme Type I 
Joist modulus of rupture and bending strength 2-P Weibull 

 
An initial study showed that the reliability was insensitive to the variability of the 
stiffness of the fastener and the sheathing. Consequently, the variability of these 
properties was excluded from the analysis. 
An extensive sensitivity study was performed where the following parameters were 
found to increase the load sharing: 
 

• Increased stiffness in the lateral load distribution system. 
• Increased variability of modulus of elasticity of the timber members. 
• Higher correlation between modulus of elasticity and bending strength. 

 
The result of the study indicates that the mean for the system effect factor is between 
1.34 and 1.63 depending of the method of evaluation. 

2.7 Roof trusses
Another common system is the roof truss with punched metal plate fasteners. Different 
structural models have been suggested for this system. The most difficult task is, 
however, to describe the behaviour of the joints in the roof truss. Properties as slip, 
clearance between members and non-linear behaviour have to be accounted for. The 
most common model types for two dimensional finite element models are according to 
Nielsen (1996): 

• Plane beam elements with pinned or rigid moment joints. 
• Fictitious member model. 
• Spring model. 
• Foschi’s model. 

 
The eccentricity of the joints that occurs when the centre lines of the timber members do 
not meet in the same point can be modelled by a fictitious element, see for example 
Riberholt (1990a,b). The spring model contains independent linear springs representing 
axial as well as rotational stiffnesses proportional to the contact area between nail plate 
and the wood. Foschi (1979) presented a model for nail-plate connections with a special 
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beam element as joint element. Furthermore, an advanced joint model has been 
developed by Ellegaard and Nielsen (1999), which gives good agreement with 
experimental tests for serviceability load. The model is expected to be extended to 
include prediction of failure mode and failure load.  
 
Zhao et. al. (1992) investigated the reliability of the truss bottom chord due to different 
span-length. The conclusions were that the span length and the metal plate connections 
were of minor importance but the truss pattern and the lumber quality have a great 
impact on the reliability of the bottom chord. In Hamon et. al. (1985), the influence of 
the correlation between timber properties was found to be not a significant factor on the 
reliability and accordingly no effort has to be done to determine this correlation. The 
calculations however indicated that a high snow load ratio gives an increased probability 
of failure. Bulleit and Yates (1991) analysed wood trusses using stochastic finite 
elements method (SFEM). Good agreement with Monte Carlo simulations was found 
and the along-the-length correlation of the material properties of the timber beams was 
shown to have marginal effect on the result. 
 
Eurocode 5 acknowledges the probabilistic and the structural load-sharing effect for 
systems as roof trusses and floor systems. The system effect factor is introduced when 
several equally spaced similar members are laterally connected by a continuous load 
distribution system. In Eurocode 5 this factor is set to 1.1.  

2.8 Probabilistic methods for structural reliability
For a simple strength-load (R - S) system the failure probability becomes 

( ) ( )�
∞

∞−

=≤−= dxxfxFSRPp sRf )(0  ( 9 ) 

where F() is the cumulative probability function (CDF) and f() is the probability density 
function (PDF). The probability of failure can in this case be seen as the lower 
(removed) part of the density function in Figure 7. 
More general Equation ( 2 ) can be written as: 

( )[ ] ( )
( )
��

≤

=≤=
0

0
X

X xxX
G

f dfGPp �  ( 10 ) 

where G() is the failure function (limit state function or performance function) and 
vector X represents all the basic variables. 
There are different ways to calculate the probability of failure pf , in Equation ( 10 ): 

• Direct integration (only possible for special cases and is therefore not further 
discussed) 

• Numeric integration as the Monte Carlo technique, see chapter 2.8.1. 
• Transforming the integrand into a multi-normal joint probability density 

function as described below in the FORM/SORM chapter. 
 
Further information in this field can be found in textbooks about general reliability in 
structures, e.g. Melchers (1999) and Thoft-Christensen et. al. (1982). 
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Figure 7: Density function, fS,R for the two-dimensional stochastic variable (S,R). 

2.8.1 Monte Carlo simulation
The Monte Carlo method provides approximate solutions to a variety of mathematical 
problems by performing statistical sampling simulations preferably on a computer. The 
method is named after the city in the Monaco principality because of the roulette, a 
simple random number generator. 
The probability in Equation ( 9 ) can be calculated by generating random values of R and 
S. The failure function is checked and it is recorded when a failure occurs, that is when R 
– S ≤ 0. This procedure is performed until desirable accuracy is achieved. The 
probability of failure, pf, is given by:  

tot
f N

SRNp )0( ≤−=  ( 11 ) 

where N(R-S≤0) is the number failures and Ntot is the total number of simulations. If the 
probability of failure is small (as for constructions), a large number of calculations have 
to be performed for reliable results. This brutal force method may be improved in many 
cases e.g. by variance reduction techniques. Variance reduction can only be achieved by 
using a priori information. One example of variance reduction techniques is the 
importance sampling method that limits the simulation to “interesting“ regions. 

2.8.2 FORM/SORM
The First Order Reliability Method is a less computer intensive way to solve the 
integrand by introducing a reliability index. According to Melchers (1999) this type of 
computation started as early as in the 1920ies but was not widely accepted until the 
1960ies. 
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The failure function may be written as: 
G = R – S ( 12 ) 

If R and S are normally distributed, then: R∈Normal(µR,σR), S∈Normal(µS,σS) and 
G∈Normal(µG,σG). 
Then the probability of failure can be written as: 

)(pf Cβ−Φ=   
 
where Φ ( ) is the standard normal distribution function and 

( 13 ) 
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βC is the reliability (or safety) index (sometimes called Cornell's reliability index after 
Cornell (1969)). The reliability index is the distance, given in standard deviations, by 
which µG exceeds zero and it is a measure of the safety of the system, see Figure 7. This 
type of calculation is often referred to as second moment method as the higher moments 
as skew and flatness are ignored. These formulas are only valid for linear failure 
functions and normally distributed, uncorrelated variables. 
Hasofer and Lind (1974) proposed a method that handles arbitrary failure functions. This 
method has been improved and was later called first-order reliability method (FORM). 
All variables are transformed into their standardized form Normal(0,1). If the variables 
are correlated, then they have to be transformed into uncorrelated ones through an eigen-
value analysis. The reliability index is then obtained as the shortest distance from origin 
to the failure function in the normalized system. The first-order reliability method has 
later been modified to also include non-normal distributed variables.  
 
The Second Order Reliability Method (SORM) is an improved way to obtain the 
reliability index taking into account the non-linearity of the failure function. Even a 
linear failure function in the original space becomes nonlinear when transformed to the 
standard normal space (where the search for the design point is done) if any of the 
variables are non-normal. Also the transformation from correlated to uncorrelated 
variables might induce nonlinearity, Sundararajan (1995). 
Many methods have been suggested to solve this problem. According to Melchers 
(1999), the most common way is to fit a parabolic or higher order surface to the actual 
failure surface centred on the design point. The probability has then to be sampled in 
some areas or approximated by first order analysis. Ditlevsen (1979a) suggested the use 
of a polyhedral envelop for the nonlinear limit state, consisting of tangent hyperplanes at 
selected points on the failure function. The failure probability is obtained through the 
union of failure regions defined by the individual hyperplanes. Narrow bounds was 
introduced to calculate the joint probability for the multiple failure regions, Ditlevsen 
(1979b). 
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2.9 The KB-method and Combined Stress Index
In the present work the strength properties are supposed to vary randomly along the 
element. This means that the failure criteria must be defined in any arbitrary section. 
Furthermore the applications in this work include interaction of normal force and 
bending moment in members subjected to second order buckling effects. The current 
codes have an interaction formula that is defined only for the most stressed section of the 
member. This was not suitable for this work. In the literature a method was found that 
fulfils this requirement called “KB-metoden” by Höglund (1968). He divided the total 
stress into two parts: One with bending moment stress from the transversal load (B-
diagram) and one for the compression load and the stress contribution from buckling (K-
diagram), see Figure 8. In Figure 8, the two first buckling modes can be seen. The first 
buckling mode gives a contribution to the bending moment between the supports and the 
second buckling mode gives an additional moment at the support. 
The method approximates the deflection at failure, for an element subjected to both 
bending and compression, with the deflection that is found at failure when the element is 
under pure compression. The deflection shape for transversal load only is sometimes 
widely different from the one achieved with normal compression load only. However, 
when continuous elastic columns become instable, they will buckle in a sine wave 
pattern as shown in Figure 8, superimposed on the deflection existing at transverse loads 
less than the critical one (Mc Guire (1968)). 
 
The main assumptions are: 

• Linear interaction between normal force and bending moment, i.e. linear elastic 
behaviour is assumed. 

• Sine shape of the displacement and approximation of the amplitude. 
• The element is secured against buckling out of plane. 
• The normal force is constant within the element. 

 
It can be shown that for any arbitrary section in a timber element subjected to both 
normal force and bending moment the interaction will become: 
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For a more detailed description see Höglund (1968) and Paper I. 
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Figure 8: Continuous column with transverse load. Statens stålbyggnadskommitté 

(1973). 
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3 Results and conclusions

3.1 Roof truss
The structural system of the studied roof truss of W-shape is modelled according to 
Riberholt (1990a, b) with fictitious beam elements to account for the eccentricity.  
In Paper I an interaction of normal force and bending moment was introduced. This was 
done by modifying work done for the Swedish steel code (Höglund, 1968), to suit 
structural timber and calculate the combined stress index (CSI) along the members. This 
approach was chosen in advance of a second order analysis because of the linearity of 
the formulae. The bending strength variation in the roof truss was modelled using the 
earlier described statistical model proposed by Isaksson (1999). Monte Carlo simulations 
were performed to calculate the CSI for 1000 roof trusses. 
The main conclusions in Paper I are:  

• Spruce with Scandinavian origin is a more homogeneous material and has 
generally higher strength compared to Radiata Pine. 

• Significant statistical system effect was found in the W-shape roof truss. For the 
investigated W-truss the statistical system effect was found to be 12 % for 
spruce and 24 % for Radiata pine due to within member variation. 

 
In Paper II a first order reliability study of the roof truss was performed. Two failure 
functions were introduced: one with statistical effects and one without. The formulae 
also describe the difference of variability for dead and live load. The statistical system 
effect is quantified. For a target reliability index equal to 4.3 the following main 
conclusions were found: 
• The statistical system effect is presented as the possible increase of the centre-to-

centre distances between trusses compared to calculations where no effect is 
accounted for. The increase was found to be 15 % for spruce and 30 % for Radiata 
pine. 

• Spruce is more homogeneous which gives a 35 % higher capacity for trusses 
produced of spruce compared to ones of Radiata pine, with dimensions and all other 
factors unchanged. 

3.2 Sheathed timber beam elements
In Paper III a sheathed parallel beam system was investigated. Monte Carlo simulations 
were performed for a parameter study. The calculations were done with a structural 
model proposed by McCutcheon (1977, 1984) and a trillinear load deflection curve for 
the solid timber beams. The failure criteria, given from experimental test by Håkansson 
and Mauritz (1999), for the system were: two neighbouring beams or any three beams. 
The following parameters was studied: Rigidity between sheathing and the solid timber 
beam, span length of the system, the number of beams in the system, the remaining 
stiffness in the broken beams and the remaining bending strength in the broken beams. 
 
Furthermore, a reliability analysis was performed where the probabilistic format was 
combined with the Swedish code format, BKR 99. The system effect due to the 
difference in coefficient of variation in the single timber beams and the system was 
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quantified to be 1.15. Further studies have to be done to determine the system effect 
factor that can be used in the code. 
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