
 
 

 
 

Preface 
 
This document is a first attempt to put together in a consistent way some - certainly not all - of the 
rules, regulations, and explanations that are necessary for the design of new structures, or the 
assessment of existing ones from a probabilistic point of view. The document, of course, is also useful 
for background calculations of non –probabilistic codes.  
 
From a probabilistic point of view designing new structures, or accepting existing ones as sufficiently 
safe, is the result of a decision-making process guided by some optimality criteria.  This process links, 
in a logical and consistent way, the requirements and expectations of the client or owner of a structure, 
the loads and actions to be expected, the characteristics of materials to be used or found in the 
proposed or existing structure, the calculation models, the grades of workmanship expected or 
observed on the site, the behavior of the users, and, finally, in an ideal case, the perceptions of society 
with respect to environmental impact and sustainable development. 
 
The aim of this document is threefold: First, it is the attempt of a number of people interested in such 
an approach to see whether, at this point in time, the main problems in the development of such a 
document can be mastered.  Second, it is intended to put a text into the hands of structural engineers 
who are willing now to apply new approaches in their work.  Third, the Joint Committee on Structural 
Safety (JCSS) is convinced that such a document will spur the development of a Probabilistic Code 
covering all aspects of Structural Engineering. 
 
There are people who advocate staying with traditional non-probabilistic codes, claiming that data is 
not sufficient for full probabilistic methods.  There is much truth in the statement that often data is 
scarce.  But this holds for both approaches.  Let's face it: since data is often scarce in either approach, 
what remains is in essence probabilistic. Important in this respect is the meaning of the word 
“probability”. In this document a “probability” is not necessarily considered as a “relative frequency 
that can be observed in reality”.  Such a straightforward interpretation is possible for dice and card 
games, but not for structural design where uncertainties must be modeled by complicated probabilistic 
models and which interact in a complex way. Here, probabilities are understood in the Bayesian way, 
expressing degrees of belief in relation to the various uncertainties, and suitable to decision making 
processes. At best, probabilities can be interpreted as “best estimates” of the relative frequencies, 
sometimes being wrong on the one side, sometimes on the other the degree of deviation from reality 
being a direct function of the state of knowledge. More discussion on this topic can be found on 
Annex X of Part 1, Basis of Design.  
 
The present version of this JCSS Probabilistic Model Code document is available on the Internet at 
www. jcss.ethz.ch. It is intended that the document will be adapted and extended a number of times in 
the years to come. To get the best possible and efficient improvements all users are invited to send 
their questions, comments and suggestions to www.jcss.ethz.ch. The JCSS hopes that this document - 
the most recent of its pre-codification work since its creation in 1972 - will find its way into the 
practical work of structural engineers. 
 
The Reporter of the JCSS               The President of the JCSS 
Michael Faber     Ton Vrouwenvelder 
 
March 2001 
 
 
 



 
 
 
 

 1 

Joint Committee         12th draft 
on Structural Safety            
JCSS-OSTL/DIA/VROU -10-11-2000 
 
 
 
 
 
 

PROBABILISTIC MODEL CODE 
 

Part 1 - BASIS OF DESIGN  
 
 
 
 



JCSS-OSTL/DIA-04-10-1999 

Contents 

1. Introduction ....................................................................................................................... 3 

2. Requirements ..................................................................................................................... 3 

2.1. Basic requirements............................................................................................................... 3 

2.2. Reliability differentiation .................................................................................................... 3 

2.3. Requirements for durability ............................................................................................... 4 

3. Principles of limit state design .......................................................................................... 4 

3.1. Limit states and adverse states ........................................................................................... 4 

3.2. Limit State Function ............................................................................................................ 6 

3.3. Design situations................................................................................................................... 7 

4. Basis of uncerainty modelling .......................................................................................... 7 

4.1. Basic variables...................................................................................................................... 7 

4.2. Types of uncertainty ............................................................................................................ 8 

4.3. Definition of populations ..................................................................................................... 8 

4.4. Hierarchy of uncertainty models ........................................................................................ 9 

5. Models for physical behaviour.......................................................................................... 9 

5.1. General.................................................................................................................................. 9 

5.2. Action models ..................................................................................................................... 10 

5.3. Geometrical models............................................................................................................ 11 

5.4. Material models.................................................................................................................. 11 

5.5. Mechanical models............................................................................................................. 12 

5.6. Model uncertainties ........................................................................................................... 13 

6. Reliability ......................................................................................................................... 14 

6.1. Reliability measures........................................................................................................... 14 

6.2. Component reliability and system reliability .................................................................. 14 

6.3. Methods for reliability analysis and calculation ............................................................. 15 

7. Target Reliability ............................................................................................................. 16 

7.1. General Aspects.................................................................................................................. 16 

7.2. Recommendations .............................................................................................................. 16 



 
 

 1 

7.2.1. Ultimate Limit States..................................................................................................................... 16 
7.2.2. Serviceability Limit State.............................................................................................................. 19 

8. Annex A: The Robustness Requirement......................................................................... 20 

8.1. Introduction........................................................................................................................ 20 

8.2. Structural and nonstructural measures ........................................................................... 20 

8.3. Simplified design procedure.............................................................................................. 21 

8.4. Recommendation................................................................................................................ 21 

9. Annex B: Durability ........................................................................................................ 23 

9.1. Probabilistic Formulations................................................................................................ 23 

9.2 Modelling of deterioration processes................................................................................ 25 

9.2. Effect of inspection............................................................................................................. 29 

9.3. Example .............................................................................................................................. 30 

10. Annex C: Reliability Analysis Principles ................................................................... 33 

10.1. Introduction........................................................................................................................ 33 

10.2. Concepts.............................................................................................................................. 33 
10.2.1. Limit States............................................................................................................................... 33 
10.2.2. Structural Reliability ................................................................................................................ 34 
10.2.3. System Concepts ...................................................................................................................... 36 

10.3. Component Reliability Analysis ....................................................................................... 37 
10.3.1. General Steps............................................................................................................................ 37 
10.3.2. Probabilistic Modelling ............................................................................................................ 38 
10.3.3. Computation of Failure Probability.......................................................................................... 41 
10.3.4. Recommendations .................................................................................................................... 44 

10.4. System Reliability Analysis ............................................................................................... 45 
10.4.1. Series systems........................................................................................................................... 45 
10.4.2. Parallel Systems........................................................................................................................ 46 

10.5. Time-Dependent Reliability .............................................................................................. 46 
10.5.1. General Remarks ...................................................................................................................... 46 
10.5.2. Transformation to Time-Independent Formulations ................................................................ 48 
10.5.3. Introduction to Crossing Theory .............................................................................................. 50 

10.6. Figures................................................................................................................................. 52 

10.7. Bibliography ....................................................................................................................... 57 



 
 

 2 

11. Annex D:Bayesian Interpretation of Probabilities .................................................... 59 

11.1. Introduction........................................................................................................................ 59 

11.2. Discussion............................................................................................................................ 59 

11.3. Conclusion .......................................................................................................................... 61 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 3 

1. Introduction  
 
This part treats the general principles for a probabilistic design of load bearing structures. The 
more detailed aspects dealing with the probabilistic description of loads are treated in part 2. 
In the same way the probabilistic description of structural resistance parameters is treated in 
part 3.  
This part doesn’t give detailed information about methods for the calculation of probabilities. 
It is assumed that the user of a probabilistic code is familiar with such methods. A clause on 
the interpretation of probabilities treated in this document is provided in Annex D. 
 

2. Requirements  

2.1. Basic requirements  

Structures and structural elements shall be designed, constructed and maintained in such a 
way that they are suited for their use during the design working life and in an economic way.  
 
In particular they shall, with appropriate levels of reliability, fulfil the following 
requirements:  
 
- They shall remain fit for the use for which they are required (serviceability limit state 
 requirement) 
- They shall withstand extreme and/or frequently repeated actions occurring during their 
 construction and anticipated use (ultimate limit state requirement)  
- They shall not be damaged by accidental events like fire, explosions, impact or 

consequences of human errors, to an extent disproportionate to the triggering event 
(robustness requirement, see Annex A).  

 

2.2. Reliability differentiation  

The expression "with appropriate levels of reliability" used above means that the degree of 
reliability should be adopted to suit the use of the structure, the type of structure or structural 
element and the situation considered in the design, etc.  
 
The choice of the various levels of reliability should take into account the possible 
consequences of failure in terms of risk to life or injury, the potential economic losses and the 
degree of social inconvenience, as described in chapter 8. It should also take into account the 
amount of expense and effort required to reduce the risk of failure. It is further noted, that the  
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term "failure" as used in this document refers to either inadequate strength or inadequate 
serviceability of the structure.  
 
The consequences of a failure generally depend on the mode of failure, specially in those 
cases when the risk to human life or injury exists. 
 
In order to provide a structure corresponding to the requirements and to the assumptions made 
in the design, appropriate quality measures shall be adopted. These measures comprise 
definition of reliability requirements, organisational measures and controls at the stages of 
design, execution and use and the maintenance of the structure.  
 

2.3. Requirements for durability  

The durability of the structure in its environment shall be such that it remains fit for use 
during its design working life. This requirement can be considered in one of the following 
ways: 
 
a) By using materials that, if well maintained, will not degenerate during the design 
 working life.  
b) By giving such dimensions that deterioration during the design working life is 
 compensated.  
c) By chosing a shorter lifetime for structural elements, which may be replaced one or 
 more times during the design working life. 
d) By inspection at fixed or condition dependent intervals and appropriate maintenance 
 activities.  
 
In all cases the reliability requirements for long and short term periods should be met. 
Analysis aspects on durability are described in Annex B. 
 
 

3. Principles of limit state design 

3.1. Limit states and adverse states  

The structural performance of a whole structure or part of it should be described with 
reference to a specified set of limit states which separate desired states of the structure from 
adverse states.  
 
The limit states are divided into the following two basic categories:  
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- the ultimate limit states, which concern the maximum load carrying capacity as well as 
the  maximum deformability 

- the serviceability limit states, which concern the normal use.  
 
The exceedance of a limit state may be irreversible or reversible. In the irreversible case the 
damage or malfunction associated with the limit state being exceeded will remain until the 
structure has been repaired. In the reversible case the damage or malfunction will remain only 
as long as the cause of the limit state being exceeded is present. As soon as this cause ceases 
to act, a transition from the adverse state back to the desired state occurs.  
 
It is further noted here that in some cases a limit between the aforementioned limit state types 
may be defined This can be done by an artificial discretization of a the continuous situation 
between the serviceability and the ultimate limit state. By applying such a procedure a so-
called  partial damage limit state” can be defined. For example in case of earthquake damage 
of plant structures such limit state is associated to the safe shut down of the plant. 
 
Ultimate limit states may correspond to the following adverse states:  
- loss of equilibrium of the structure or of a part of the structure, considered as a rigid 
 body (eg. overturning) 
- attainment of the maximum resistance capacity of sections, members or connections  

by rupture or excessive deformations  
- rupture of members or connections caused by fatigue or other time-dependent effects     

instability of the structure or part of it  
- sudden change of the assumed structural system to a new system, (eg. snap through) 
 
The exceedance of an ultimate limit state is almost always irreversible and the first time that 
this occurs causes failure.  
 
Serviceability limit states may correspond to the following adverse states:  
- local damage (including cracking) which may reduce the durability of the structure or 
 affect the efficiency or appearance of structural or non-structural elements.  
- observable damage caused by fatigue or other time dependent effects  
- unacceptable deformations which affect the efficient use or appearance of structural or 

non-structural elements or the functioning of equipment.  
excessive vibrations which cause discomfort to people or affect non-structural  

- elements or the functioning of equipment 
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In the cases of permanent local damage or permanent unacceptable deformations the 
exceedance of a serviceability limit state is irreversible and the first time that this occurs 
causes failure.  
 
In other cases the exceedance of a serviceability limit state may be reversible and then failure 
occurs:  
 
a) the first time the serviceability limit state is exceeded, if no exceedance is considered 

as acceptable 
b) if exceedance is acceptable but the time when the structure is in the undesired state is 
 longer than specified  
c) if exceedance is acceptable but the number of times that the serveciability limit state is 
 exceeded is larger than specified  
d) if a combination of the above criteria occur. 
  
These cases may involve temporary local damage (eg. temporarily wide cracks), temporary 
large deformations and vibrations. Limit values for the serviceability limit state should be 
defined on the basis of utility considerations. 
 

3.2. Limit State Function 

For each specific limit state the relevant basic variables should be identified, i.e. the variables 
which characterize:  
 
- actions and environmental influences  
- properties of materials and soils  
- geometrical parameters  
 
Such variables may be time dependent. Models, which describe the behaviour of a structure, 
should be established for each limit state. These models include mechanical models, which 
describe the structural behaviour, as well as other physical or chemical models, which 
describe the effects of environmental influences on the material properties. The parameters of 
such models should in principle be treated in the same way as basic variables.  
 
Serviceability constaints (limit values according to 4.1) should in principle be regarded as 
random and may in many cases be treated in the same way as basic variables.  
 
Where calculation models are available, the limit state can be described with aid of a function, 
g, of the basic variables X(t) = X1(t), X2(t), ... so that  
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 g (X(t)) = 0          (1) 
 
Eq. (1) is called the limit state equation, and  
 
 g (X(t)) < 0           (2)  
 
identifies the adverse state.  
 
In a component analysis where there is one dominating failure mode the limit state condition 
can normally be described by one equation according to eq. (1). In a system analysis, where 
more than one failure mode may be determining, there are several such equations.  
 

3.3. Design situations 

Actions, environmental influences and structural properties may vary with time. Such 
variations, which occur throughout the lifetime of the structure, should be considered by 
selected design situations, each one representing a certain time intervall with associated 
hazards, conditions and relevant structural limit states. 
 
The design situations may be classified as: 
 
Persistent situations, which refer to conditions of normal use of the structure and are 
generally related to the working life of the structure. 
Transient situations, which refer to temporary conditions of the structure, in terms of its use 
or its exposure. 
Accidental situations, which refer to exceptional conditions of the structure or its exposure. 
 

4. Basis of uncerainty modelling 

4.1. Basic variables   

The calculation model for each limit state considered should contain a specified set of basic 
variables, i.e. physical quantities which characterize actions and environmental influences, 
material and soil properties and geometrical quantities. The model should also contain model 
parameters which characterize the model itself and which are treated as basic variables 
(compare 4.2). Finally there are also parameters which describe the requirements (e.g. 
serviceability constraints) and which may be treated as basic variables. The basic variables (in 
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the wide sence given above) are assumed to carry the entire input information to the 
calculation model.  
 
The basic variables may be random variables (indlucing the special case deterministic 
variables) or stochastic processes or random fields. Each basic variable is defined by a 
number of parameters such as mean, standard deviation, parameters determining the 
correlation structure etc.  
 

4.2. Types of uncertainty  

Uncertainties from all essential sources must be evaluated and integrated in a basic variable 
model. Types of uncertainty to be taken into account are:  
 
- intrinsic physical or mechanical uncertainty  
- statistical uncertainty, when the design decisions are based on a small sample of 
 observations or when there are other similar conditions  
- model uncertainties (see 5.6). 
 
Within given classes of structural design problems the types of probability distributions of the 
basic variables should be standardized. These standardizations are defined in the parts 2 and 3 
of the probabilistic model code.  
 

4.3. Definition of populations 

The random quantities within a reliability analysis should always be related to a meaningfull 
and consistent set of populations. The description of the random quantities should correspond 
to this set and the resulting failure probability is only valid for the same set. 
 
The basis for the definition of a population is in most cases the physical background of the 
variable. Factors which may define the population are: 
 
- the nature and origin of a random quantity 
- the spatial conditions (e.g. the geographical region considered)  
- the temporal conditions (e.g. the intended time of use of the structure considered) 
 
The choice of a population is to some extent a free choice of the designer. It may depend on 
the objective of the analysis, the amount and nature of the available data and the amount of 
work that can be afforded. 
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In connection with theoretical treatment of data and with the evaluation of observations it is 
often convenient to divide the largest population into sub-populations which in turn are 
further divided in smaller sub-populations etc. Then it is possible to study and distinguish 
variability within a population and variability between different populations.  
 
In an analysis for a specific structure it may be efficient to define a population as small as 
possible as far as use, shape and location of the structure are concerned (microzonation). 
When the results are used for design in a national or international code, it may be necessary or 
convenient to put the sub-populations together to the large population again in order not to get 
too complicated rules (randomizing). This means that the variability within the population is 
increased.  
 

4.4. Hierarchy of uncertainty models 

This section contains a convenient and recommended mathematical description in general 
terms of a hierarchical model which can be used for different kinds of actions and materials. 
The details of this model have to be stated more precisely for each specific variable. The 
model is associated with a hierarchical set of subpopulations. 
 
The hierarchical model assumes that  a random quantity X can be written as a function of 
several variables, each one representing a specific type of variability: 
 
 Xijk = f (Yi, Yij, Yijk)        (3) 
 
The Y represent various origins, time scales of fluctuation or spatial scales of fluctuation. 
 
For instance Yi may represent the building to building variation, Yij the floor to floor variation 
in building i and Yijk the point to point variation on floor j in building i. 
 
In a similar way, Yi may represent the constant in time variability, Yij a slowly fluctuating 
time process and Yijk a fast fluctuating time process.  
 

5. Models for physical behaviour 

5.1. General 

Calculation models shall describe the structure and its behaviour up to the limit state under 
consideration, accounting for relevant actions and environmental influences. Models should 
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generally be regarded as simplifications which take account of decisive factors and neglect 
the less important ones.  
 
One can often distinguish between: 
- action models  
- structural models which give action effects (internal forces, moments etc.) 
- resistance models which give resistances corresponding to the action effects, and are 
 based on. 
- material models and geometry models . 
 
However, in some cases it is not possible or convenient to make this distinction, for example, 
if the instability or loss of equilibrium of an entire structural system is studied or if 
interactions between loads and structural response are of interest.  
 

5.2. Action models  

A complete action model should describe several properties of the action such as its 
magnitude, position, direction, duration etc. In some cases there is an interaction between the 
different properties and also between these properties and the response of the structure. Such 
interactions should be taken into account.  
 
The magnitude F of an action may often be described by two different types of variables so 
that  
 
 F = ϕ (Fo, W)          (4) 
 
where ϕ  is an appropriate function and  
 Fo is a basic action variable, often with time and space dependent variations  
  (random or non-random) and is generally independent of the structure  
 W is a random or non-random variable or a random field which may depend on 
the   structural properties and which transformes Fo to F.  
 
Eq. (4) should be regarded as a symbolic expression where Fo and W may represent several 
variables. 
 
One example may be snow load where Fo is the time dependent snow load on ground and W 
is the conversion factor for snow load on ground to snow load on roof which normally is 
assumed to to be time independent.  
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Further information on action models is provided in part 2. It is noted that action models may 
include material properties (earthquake action depends for example on material damping). 
 

5.3. Geometrical models  

A structure can generally be described by a model consisting of one-dimensional elements 
(beams, columns, cables, arches, etc), two-dimensional elements (slabs, walls, shells, etc) and 
three-dimensional elements.  
 
The geometrical quantities which are included in the model generally refer to nominal values, 
i.e. the values given in drawings, descriptions etc. Normally, the geometrical quantities of a 
real structure differ from their nominal values, i.e. the structure has geometrical 
imperfections. If the structural behaviour is sensitive to such imperfections, these shall be 
inlcuded in the model.  
 
In many cases the deformation of a structure causes significant deviations from nominal 
values of geometrical quantities. If such deformations are of importance for the structural 
behaviour, they have to be considered in the design in principally the same way as 
imperfections. The effects of such deformations are generally denoted geometrically 
nonlinear or second order effects and should be accounted for. 
 

5.4. Material models  

When strength or stiffness is considered the material model normally consists of relations 
between forces or stresses and deformations i.e costitutive relationships. The parameters of 
such relations are modulus of elasticity, yield limit, ultimate strength etc. which generally are 
considered as random variables, Sometimes they are time dependent or space dependent. 
There is often an correlation between the parameters e.g. the modulus of elasticity and the 
ultimate strength of concrete.  
 
Other material properties, e.g. resistance against material deterioration may often be treated in 
a similar way. However the principles are strongly dependent on type of material and the 
property considered.  
 
Further information related to models of several material types is given in part 3. 
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5.5. Mechanical models  

 
The following mechanical models may be classified 

a) models describing static response 
b) models decribing dynamic response 
c) models for fatigue 
 
a) models describing static response 

 
In almost all design calculations some assumptions concerning the relation between forces or 
moments and deformations (or deformation rates) are necessary. These assumptions can vary 
and depend on the purpose and type of calculation. The most general relationship regarding 
structural response is considered to be elastic) developing into plastic behaviour in certain 
parts of the structure at high action effects. In other parts of the structure intermediate stages 
occur. Such relationships may be used generally. However the use of any theory taking into 
account in-elastic or post-critical behaviour may have to take into account repetitions of 
variable actions that are free. Such actions may cause great variations of the action effects, 
repeated yielding and exhaustion of the deformation capacity.  
 
The theory of elasticity may be regarded as a simplification of a more general theory and may 
generally be used provided that forces and moments are limited to those values, for which the 
behaviour of the structure is still considered as elastic. However, the theory of elasticity may 
also be used in other cases if it is applied as a conservative approximation.  
 
Theories in which fully developed plasticity is assumed to occur in certain zones of the 
structure (plastic hinges in beams, yield lines in slabs, etc) may also be used, provided that the 
deformations which are needed to ensure plastic behaviour, occur before the ultimate limit 
state is reached. Thus theory of plasticity should be used with care to determine the load 
carrying capacity of a structure, if this capacity is limited by:  
 
- brittle failure  
- failure due to instability  
 

b) models for dynamic response 
 
In most cases dynamic response of a structure is caused by a rapid variation of the magnitude, 
position or direction of an action However, a sudden change of the stiffness or resistance of a 
structural element may also cause dynamic behaviour. 
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The models for dynamic response consist in general of: 
 

• a stiffness model 
• a damping model 
• an inertia model 

 
c) models for fatigue 

 
Fatigue models are used for the description of fatigue failures caused by fluctuating actions. 
Two types of models are distinguished: 
 

a) S-N model based on experiments 
b) fracture mechanics model 

 
It is further noted here, that other types of degradation such as chemical attack or fire can 
modify the parameters entering the aforementioned models or the models themselves. 
 

5.6. Model uncertainties  

A calculation model is a physically based or empirical relation between relevant variables, 
which are in general random variables:  
 
 Y = f (X1, X2, ... Xn)         (5)  
 
 Y =   model output  
 f ( ) =   model function  
 Xi  =   basic variables  
 
The model f (...) may be complete and exact, so that, if the values of Xi are known in a 
particular experiment (from measurements), the outcome Y can be predicted without error. 
This, however, is not normally the situation. In most cases the model will be incomplete and 
inexact. This may be the result of lack of knowledge, or a deliberate simplification of the 
model, for the convenience of the designer. The difference between the model prediction and 
the real outcome of the experiment can be written down as: 
 
  Y = f ′ (X1 ... Xn, θ1 ... θm)         (6)  
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θi are referred to as parameters which contain the model uncertainties and are treated as 
random variables. Their statistical properties can in most cases be derived from experiments 
or observations. The mean of these parameters should be determined in such a way that, on 
average, the calculation model correctly predicts the test results.  
 
 

6. Reliability  

6.1. Reliability measures  

 A standard reliability measure may be chosen to be the generalized reliability index. It is 
defined as: 
 
 β = - Φ-1 (Pf)           (7)  
 
where  Pf  is the probability of failure  
 Φ-1(⋅) is the inverse Gaussian distribution 
 
Another equivalent reliability measure is the probability of the complement of the adverse 
event  

 
 Ps = 1 - Pf            (8)  
 
The probability Pf should be calculated on the basis of the standardized joint distribution type 
of the basic variables and the standardized distributional formalism of dealing with both 
model uncertainty and statistical uncertainty.    
 
In special situations other than the standardized distribution types can be relevant for the 
reliability evaluation. In such cases the distributional assumptions must be tested on a suitable 
representative set of observation data. 
 
Reliability analysis principles including time-dependent reliability problems are described in 
Annex C. 
 

6.2. Component reliability and system reliability  

Component reliability is the reliability of one single structural component which has one 
dominating failure mode.  
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System reliability is the reliability of a structural system composed of a number of 
components or the reliability of a single component which has several failure modes of nearly 
equal importance. The following type of systems can be classified: 
 
• -redundant systems where the components are “fail safe”, i.e. local behaviour of one 

component does not directly result in failure of the structure; 
• -non-redundant systems where local failure of one component leads rapidly to failure of 

the structure. 
 
Probabilistic structural design is primarily concerned with component behaviour. System 
behaviour is, however, of concern because it is usually the most serious consequence of 
structural failure. Therefore the likelihood of system failure following an initial component 
failure should be assessed. In particular, it is necessary to determine the system characteristics 
in relation to damage tolerance or robustness with respect to accidental events. The 
requirements for the reliability of the components of a system should depend upon the system 
characteristics.  
 
A probabilistic system analysis should therefore be carried out to establish: 
- the redundancy (alternate load-carrying paths)  
- the state and complexity of the structure (multiple failure modes). 
 
Furher aspects on system reliability are provided in Annex C. 
 

6.3. Methods for reliability analysis and calculation   

The numerical value of the reliability measure is obtained by a reliability analysis and 
calculation method (see Annex C). The reliability method used should be capable of 
producing a sensitivity analysis including importance factors for uncertain parameters. The 
choice of the method should be in general justified. The justification can be for example 
based by another relevant computation method or by reference to appropriate literature.  
 
Due to the computational complexity a method giving an approximation to the exact result is 
generally applied. Two fundamental accuracy requirements are: 
 
- Overestimation of the reliability due to use of an approximative calculation method  

shall be within limits generally accepted for the specific type of structure.  
- The overestimation of the reliability index should not exceed 5 % with respect to the  

target level. 
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The accuracy of the reliability calculation method is linked to the sensitivity with respect to 
structural dimensions and material properties in the resulting design.  
 

7. Target Reliability  

7.1. General Aspects 

In terms of a reliability based approach the structural risk acceptance criteria correspond to a 
required minimum reliability herein defined as target reliability. The  requirements to the 
safety of the structure are consequently expressed in terms of the accepted minimum 
reliability index or the accepted maximum failure probability.  
 
In a rational analysis the target reliability is considered as a control parameter subject to 
optimization. The parameter assigns a particular investment to the material placed in the 
structure. The more material - invested in right places - the less is the expected loss. Such 
optimization is mainly possible when economic loss components dominate over life, injury, 
and culture components. When the expected loss of life or limb is important, the optimal 
reliability level becomes more controversional. Frequently, this leads to the problem of the 
economic equivalent of human life; risk-benefit analyses are then applied to circuvent this 
difficulty; the reliability of the system is translated into the cost per life saved. The target 
reliability may then be chosen such that the cost per life saved is at acceptable levels (for 
example comparable to other similar systems). 
 
In a practical approach the required reliability of the structure is controlled by: 
i) a set of assumptions about quality assurance and quality management measures; these 
measures are for example related to design and construction supervision and are intended to 
avoid gross errors.  
ii) formal failure probability requirements, conditional upon these assumptions, defined by 
specified target values for the various classes of structures and structural members. 
 

7.2. Recommendations 

Target reliability values are provided in the next paragraphs. They are based on optimization 
procedures and on the assumption that for allmost all engineering facilities the only 
reasonable reconstruction policy is systematic rebuilding or repair. 

7.2.1. Ultimate Limit States  

Target reliability values for ultimate limit states are proposed in Table 1. The values in Table 
1 are obtained based on cost benefit analysis for the public at characteristic and representative 
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but simple example structures and are compatible with calibration studies and statistical 
observations. 
 
Table 1: Tentative target reliability indices β (and associated target failure rates) related 
to one year reference period and ultimate limit states 

1 2 3 4 

Relative cost of safety 

measure 

Minor consequences 

of failure 

Moderate 

consequences of 

failure 

Large  

consequences of 

failure 

Large (A)   β=3.1 (pF≈10-3)   β=3.3 (pF ≈ 5 10-4)   β=3.7 (pF ≈ 10-4) 

Normal (B)   β=3.7 (pF≈10-4)   β=4.2 (pF ≈ 10-5)   β=4.4 (pF ≈ 5 10-6) 

Small (C)   β=4.2 (pF≈10-5)   β=4.4 (pF ≈ 5 10-6)   β=4.7 (pF ≈ 10-6) 

 

 

The shadowed value in Table 1 should be considered as the most common design situation.  
In order to make the right choice in this table the following guidelines may be of help: 
 
 
♦ Consequence classes 
 
A classification into consequenze classes is based on the ratio ρ defined as the ratio between 
total costs (i.e. construction costs plus direct failure costs) and construction costs. 
 
Class 1 Minor Consequences:  ρ  is less than approximately 2 
Risk to life, given a failure, is small to negligible and economic consequences are small or 
negligible (e.g. agricultural structures, silos, masts);  
Class 2 Moderate Consequences:  ρ  is between 2 and 5. 
Risk to life, given a failure, is medium or economic consequences are considerable (e.g. office 
buildings, industrial buildings, apartment buildings).  
Class 3 Large Consequences:  ρ  is between 5 and 10. 

Risk to life, given a failure, is high, or economic consequences are significant (e.g. main 
bridges, theaters, hospitals, high rise buildings). 
 
If ρ is larger than 10 and the absolute value of H also is large, the consequences should be 
regarded as extreme and a full cost benefit analysis is recommended. The conclusion might be 
that the structure should not be build at all. 
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One should be aware of the fact that failure consequences also depend on the type of failure, 
which can be classified according to: 
 
a) ductile failure with reserve strength capacity resulting from strain hardening 
b) ductile failure with no reserve capacity 
c) brittle failure 
 
Consequently a structural element which would be likely to collapse suddenly without 
warning should be designed for a higher level of reliability than one for which a collapse is 
preceded by some kind of warning which enables measures to be taken to avoid severe 
consequences. 
The values given relate to the structural system or in approximation to the dominant failure 
mode or structural component dominating system failure. Therefore, structures with multiple, 
equally important failure modes should be designed for a higher level of reliability.  
 
♦ Relative cost of safety measures classificaton 
The normal class (B) should be associated with: 
 
• medium variabilities of the total loads and resistances (0.1 < V < 0.3), 
• relative cost of safety measure 
• normal design life and normal obsolesce rate composed to construction costs of the order 

of 3%  
The given values are for structures or structural elements as designed (not as built). Failures 
due to human error or ignorance and failures due to non-structural causes are not covered by 
table 1.  
Values outside the given ranges may lead to a higher or lower classification. In particular 
attention may be given to the following aspects: 
 
♦ Degree of Uncertainty 
A large uncertainty in either loading or resistance (coefficients of variation larger then 40 %), 
as for instance the case of many accidental and seismic situations, a lower reliability class 
should be used. The point is that for these large uncertainties the additional costs to achieve a 
high reliability are prohibitive. If on the other hand both acting and resisting variables have 
coefficients of variation smaller than 10%, like for most dead loads and well-known small 
resistance variability, a higher class can be achieved by very little effort and this should be 
done. 
♦ Quality assurance and inspections  
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Quality assurance (for new structures) and inspections (for existing structures) have an 
increasing effect on costs. This will lead to a lower reliability class. On the other hand, due to 
QA and inspections the uncertainty will normally decrease and a higher class becomes 
economically more attractive. General rules are difficult to give. 
♦ Existing structures  
For existing structures the costs of achieving a higher reliability level are usually high 
compared to structures under design. For this reason the target level for existing structures 
usually should be lower. 
♦ Service life and/or obsolesce 
For structures designed for short service life or otherwise rapid obsolesce (say less than 10 
years) the beta-values can be lowered by one or half a class. 
 
By definition serviceability failures are not associated with loss of human life or limb. For 
existing structures the demand will be more related to the actual situation in performance and 
use. No general rules are given in this document. 
 

7.2.2. Serviceability Limit State 

When setting target values for serviceability limit states (SLS) it is important to distinguish 
between irreversible and reversible serviceability limit states. Target values for SLS can be 
derived based on  decision analysis methods.  
 
For irreversible serviceability limit states tentative target values are given in Table 2. A 
variation from the target serviceability indexes of the order of 0.3 can be considered. For 
reversible serviceability limit states no general values are given.  
 
Table 2:  Tentative target reliability indices (and associated probabilities) related to 

one year reference period and irreversible serviceability limit  states 
Relative Cost of Safety Measure Target Index 

(irreversible SLS) 
High β=1.3(pF≈10-1) 

Normal β=1.7(pF≈5 10-2) 
Low β=2.3(pF≈10-2) 
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8. Annex A: The Robustness Requirement 

8.1. Introduction 

In clause 3.1 the following robustment requirement has been formulated: 
 

“A structure shall not be damaged by events like fire explosions or consequences of human 
errors, deterioration effects, etc. to an extend disproportionate to the severeness of the 
triggering event”. 

 
This annex is intended to give some further guidance. No attention is being paid to terrorist 
actions and actions of war. The general idea is that, whatever the design, proper destructive 
actions can always be succesful. 
 

8.2. Structural and nonstructural measures 

In order to attain adequate safety in relation with accidental loads one or more of the following 
strategies may be followed: 

1. reduction of the probability that the action occurs or reduction of the action intensity 
(prevention) 

2. reduction of the effect of the action on the structure (protection) 
3. making the structure strong enough to withstand the loads 
4. limiting the amount of structural damage 
5. migitation of the consequences of failure 

 
The strategies 1, 2 and 5 are so called non-structural measures. These measures are considered 
as being very effective for some specific accidental action. 
  
The strategies 3 and 4 are so called structural measures. In general strategy 3 is extremely 
expensive in most cases. Strategy 4, on the other hand accepts some members to fail, but 
requires that the total damage is limited. This means that the structure should have sufficient 
redundancy and possibilities to mobilise so called alternative load paths.  
 
In the ideal design procedure, the occurrence and effects of an accidental action (impact, 
explosion, etc.) are simulated for all possible action scenarios. The damage effect of the 
structural members is calculated and stability of the remaining structure assessed. Next the 
consequences are estimated in terms of number of casualties and economic losses. Various 
measures can be compared on the basis of economic criteria. 
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8.3. Simplified design procedure 

The approach sketched in A2 has two disadvantages: 
(1) it is extremely complicated 
(2) it does not work for unforseenable hazards 

 
As a result other more global design strategies have been developed, like the classical 
requirements on sufficient ductility and tying of elements.  
  
Another approach is that one considers the situation that a structural element (beam, column) 
has been damaged, by whatever event, to such an extend that its normal load bearing capacity 
has vanished almost completely. For the remaining part of the structure it then required that fore 
some relatively short period of time (repair period T) the structure can withstand the "normal" 
loads with some prescribed reliability: 
 
 P(R < S in T | one element removed) < ptarget   (A1) 
 
The target reliability in (A1) depends on: 
-  the normal safety target for the building 
-  the period under consideration (hours, days or months) 
- the probability that the element under consideration is removed (by other causes then 

already considered in design). 
 
The probability that some element is removed by some cause, not yet considered in design, 
depends on the sophistication of the design procedure and on the type of structure. For a 
conventional structure it should, at least in theory, be possible to include all relevant collapse 
origins in the design. Of course, it will always be possible to think of failure causes not covered 
by the design, but those will have a remote likelihood and may be disregarded on the basis of 
decision theoretical arguments. For unconventional structures this certainly will not be the case. 
 

8.4. Recommendation 

For unconventional structures, as for instance large structures, the probability of having some 
unspecified failure cause is substantial. If in addition new materials or new design concepts are 
used, unexpected failure causes become more likely. This would indicate that for 
unconventional structures the simplified approach should be recommended. 
 
For conventional structures there is a choice:  
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(1) one might argue that, as one never succeeds in dealing with all failure causes explicitly 
in a satisfactory way, it has no use to make refined analyses including system effect, 
accidental actions and so on; this leads to the use of the simplified procedure.  

(2) one might also eliminate the use of an explicit robustness requirement (A1) as much as 
possible by taking into the design as many aspects explicitly as possible.  

 
Stated as such it seems that the second approach is more rational, as it offers the possibility to 
reduce the risks in the most economical way, e.g. by sprinklers (for fire), barriers (for collision), 
QA (for errors), relief openings (for explosions), artificial damping (for earth quake), 
maintenance (for deterioration) and so on. 
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9. Annex B: Durability 

9.1.  Probabilistic Formulations 

Loads as well as material properties may vary in time as stationary or non-stationary 
processes. Time may also be present in the limit state function as an explicit parameter. As a 
result, the failure probability of a structure is also time dependent. The general formulation 
for the failure probability for a period of time t may be presented as: 
 
 PF ( t )  = P [ min g( x(τ);τ ) < 0  for 0 < τ < t ]     (B1) 
 
g(.)   =  limit state function 
x(τ) =  vector of basic variable at time τ 
t =  period of time under consideration 
τ =  time 
 
The failure may be of ULS as well as SLS type. One should keep in mind that also in the case 
of a non-deteriorating time independent resistance and a stationary loading condition, the 
failure probability is also time dependent due to the random fluctuations of the load. This, 
however, is usually not considered as a durability problem. 
 
Given (B1), the conditional failure rate (also referred to as risk functions) at time t may be 
found as: 
 

 r( t ) = [ ]
)(1

)(),(
tP

tp
t

tupsurvivaltttinfailureP

F

F

−
=

∆
∆+    (B2) 

 
where  

 pF( t ) = 
dt

(t)FdP
         (B3) 

 
is the failure time density. For small values of t, the failure probability PF( t ) is close to zero, 
which makes  the conditional failure rate and the density almost numerically equal. For 
durability problems, the conditional failure rate is usually increasing in time. Reliability limits 
set in section 7 may be related to (B2) or (B3) whichever is appropriate. 
 
If failure of a structural element leads automatically to replacement by a similar element, one 
may alternatively use the renewal density h, defined as; 
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 h( t ) = 
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For small t the result will be equal to (B2) and (B3). For large t the value of h will 
asymptotically lead to 1/µ and where µ is the mean time to failure, defined as: 
 

 µ = ( ) dttPdttpt FF ∫∫
∞∞

−=
00

)(1)(       (B5) 

 
The calculation procedure for PF ( t ) depends on the nature of the limit state function g(.). If 
g(.) is a smooth monotonically decreasing function not depending explicitly on random 
process variables, the minimum value is reached at the end of the period, and we simply have: 
 
 PF(t) = P [g( x;t ) < 0 ]        (B6) 
 
If g(.) depends on random process variables and, therefore, is not monotonically decreasing, 
we have a first passage problem. In that case the following upper bound approximation may 
be useful: 
 

 PF(t) = PF(0) + ∫
t

0
ν - (τ)dτ       (B7) 

 
where PF(0) is the failure at the start and ν- the outcrossing rate or unconditional failure rate 
which is given by: 
 

ν- (τ) =  
τ∆

<τ∆+τ∩>τ ]0)(0)([ ggP       (B8) 

 
In general, the limit state function g(.) may be quite complex due to a combination of 
physical, chemical and mechanical processes. Take as an example the deterioration processes 
due to carbonation and/or chloride ingress of concrete. After some period of time the 
carbonation or chloride fronts may reach the reinforcement and corrosion may start, resulting 
eventually in spalling and later even in failure by collapse due to some large mechanical load 
(see figure B1). Many parameters like the outside climate, the cover of the concrete, the 
diffusion properties, the corrosion speed and so on may play a role.  
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Figure B1: Failure due to a combination of physical and chemical processes and a variable 

mechanical load 

 
 

9.2 Modelling of deterioration processes 

In this Annex we will restrict the discussion to a family of relatively simple damage 
accumulation processes that can be described by the following differential equation: 
 

 
dt
dy  = yk h(z)         (B9) 

 
where 
 
y(t) = damage indicator 
z(t) = random process of disturbances  
h(.) = positive definite function of z 
k = parameter determining the nature of the process 
 
From B(9) we may arrive at: 
 

∫
)(

)0(
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y

y-k dy  =  ∫
t

0

h(z(τ)) dτ       (B10)  
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Defining Ψ(y) as the integral function of y--k and χ(t) as the right hand side integral of (B10), 
this can be written as: 
 
 Ψ(y(t)) -  Ψ(y(0)) = χ(t) 
 
If z(t) is stationary and ergodic, χ(t) may asymptotically be taken as implying that the damage 
increases smoothly: 
 

χ(t) = t E{h(z(t)}        (B11) 
 
Failure will occur if de damage y(t) exceeds some critical value ycr, which leads finally to the 
following expression for the limit state function: 
 
 g(t) = Ψ( ycr (t)) - Ψ(y(0)) - χ(t)       (B12) 
 
The critical value ycr may be a constant or time dependent. If ycr is a constant we may use 
(B3), to find the failure probability. If ycr is time dependent we have a first passage problem. 
 

Characteristic examples 

 
1. Abrasion / corrosion modelling 
 
Abrasion and/or corrosion mechanisms can be modelled by k=0 and h(z) = z. In  that case 
(B9) reduces to: 
 

dt
dy = z(t) 

 
For abrasion or corrosion the damage parameter y corresponds to the thickness of the lost 
material and z represents is the abrasion or corrosion rate. In this case Ψ is simple equal to y 
itself. Assuming that z(t) is a stationary and ergodic random process with mean µz, we may 
use (B12) and arrive at: 
 
 g(t) = ycr – yo – µz t 
 
The value yo may be 0 (or random) and the critical value of ycr may be related to the load and 
material strength, for instance: 
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 ycr = do – S/f 
 
where do is the original material thickness, S the load per unit length and f the material 
rupture strenght. It can easily be seen that ycr is constant in time for a constant load S and that 
ycr is time dependent for a fluctuating load. 
 
2.  Duration of load 
 
We consider again the case n=0 and h(z) = z. Let now, however, y represent the relative 
reduction of the material strength R, that is R(t) = Ro(1-y).Let further the disturbance z be 
proportional to the mechanical load S. In other words: the presence of a load will lead to a 
damage or strength reduction, and more if the load is higher. Such a model can be used to 
represent duration of load effects. If we define z = S/So, with So some random material 
parameter, we arrive at: 
 
 g(t) = ycr – yo – µS t / So 
 
Let yo = 0 and let ycr correspond to R(t) = Ro(1- ycr) = S(t), we arrive finally at: 
 
 g(t) = (1- µS t / So ) – S(t)/Ro 

 
or equivalently: 
 
 g(t) = Ro(1- µS t / So ) – S(t) 

 
Again, if S is a constant load we may use (B6); if not we have a first passage problem. The 
resulting time dependent strength for a constant load S is presented in figure B2. 
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Figure B2: Load duration dependent strength under constant load 

 
3. Fatigue Crack Propagation 
 
Due to load fluctuations some initial small crack in a structure may grow and weaken the 

cross section. Finally some large load amplitude may lead to collapse of the structural element 

(see figure B3). The differential equation for the crack growth a is given by: 

 

dn
da  = C Y(a) [ ∆S(n) aπ ]m 

 
Where ∆S represents the stress range, Y(a) represents a geometrical function, C and m are 

material constants and n is the stress cycle number. Note that in this example the time t has 

been replaced by the load cycle number n and that k in (B5) corresponds to m/2. The 

functions Ψ and χ are then given by (assuming ∆S to be stationary and ergodic): 

 

 Ψ = 
CYm
1

2
2
−

 π--m/2  p-m/2 a 1-m/2 

 
χ =  n E{(∆S)m} 

 
And the limit state function is given by: 
 
 g(t) = Ψ(acr)  -  Ψ(a0)-χ 
 
where a0 is the initial crack length and acr the critical crack length, which again may be time 
dependent or time independent. In the fist case (B6) may be used, in the second case we have 
a first passage problem. 
 
Alternatively, one may formulate the limit state function in the crack domain: 
 

 g(t)  = acr – a(n) with  a(n) = 






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−
+− }{

2
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or in the time domain: 
 

 g(t) =  N – n   with  N = 
}m)S{(E

)oa()cra(

∆

ψ−ψ  
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These alternative formulations are fully equivalent to the first one. 
 

 
 
 

Figure B3: Fatigue fracture under cyclic loading 

 

9.2. Effect of inspection 

In the case of deteriorating processes it may be uneconomic to design a structure in such a 
way that the reliability is sufficient for a normal design life of  50 years. In those cases a more 
economical solution can be obtained by the definition of an inspection scheme. In those cases 
failure will not occur if the inspection reveals some predefined deterioration criterion and the 
structure is repaired adequately.   
 
The sequence of events can be represented in an event tree as indicated in Figure B4. Let the 
first inspection Ii be planned at time ti. In that case we may have three possibilities. 
 

1) a failure occurs before ti (branche F) 
2) the inspection detects a serious defect and repair is necessary (branche R) 
3) no serious defect is detected and a next inspection at t = t2 is planned 

 
If the structure is repaired, one may usually assume that all variables are reset to the initial 
situation. From every event R then a new event tree of the same type as the one in figure B4 is 
started. 
 
For reasons of simplicity we will start by having one inspection only. Using the total 
probability theorem, the probability of failure for a period  t may then formally be written as: 

S

R (τ)

R,S

failure

k = load cycle
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 PF(t) = P[ F | Zi > 0 ] P(Zi > 0) + P[ F | Zi < 0 ] P(Zi < 0)      (B13) 
 
where 
 
F =  failure 
Zi  =  inspection result of inspection at time ti (negative values correspond to the detection 

of    damage) 
 
If we assume that in the case of a serious damage revealed at the inspection (that is Z<0) the 
structure will be repaired adequately, (B13) may be reduced to (replacing F by minτ g (τ) < 0, 
where g( ) is the limit state function and 0 < τ< t): 
 
 PF(t) = P[ minτ g(τ ) < 0 | Zi > 0 ] P(Zi > 0) ] 
 
or simply: 
 
 PF(t) = P[ minτ g(τ ) < 0  ∩  Zi > 0 ] 
 
If more inspections in fixed intervals are present we arrive at:  
 
 PF(t) = P [ minτ g(x(τ);τ) < 0   ∩   {∩Zi(x(ti);ti) } > 0  for 0 < τ < t ]   (B14) 
 
ti  =  time of inspection; only inspections with ti < τ are relevant 
 
Note: whether or not an inspection is planned, of course, is a matter of economy. 
 

9.3. Example 

Figure B5 clarifies formula (B14) for the case of fatigue. As discussed before, the g-function 
for the situation at the load cycle at time τ is given by: 
 
 g = acr - a(t) 
 
Let the crack a(τ) be monitored by a yearly inspection. If the measured crack am is larger that 
some limit alim the structure will be adequately repaired. An inspection failure may then be 
modelled as Zins < 0 with: 
 
 Zins = alim - am (ti) 
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In present practice alim usually corresponds to the detection limit and the probability 
distribution for alim is then equal to the so called POD-curve (probability of detection).  
 
Failure will occur only if the measured value am(tins) is below the limit value alim at inspection 
ti but above the acrit before the next inspection. This way failure probability can be reduced by 
shorter inspection intervals or by more refined or accurate inspection techniques.  
 
Note that an implication of this method is that these Probability of Detection curves (POD 
curves) and measurement accuracy’s must be known to the designer in order to decide 
whether or not a certain structure meets the reliability requirements. Note further that the 
probability of repair is given by: 
 
 P = P[Zins < 0] 
 
Repair may be considered like some serviceability limit state. The designer should also make 
sure that the probability of repair is below some economic limit value. 
 
 
 

                             F

   0                                                   F

                             I1                         R                        F

                                                        I2                         R

                                                                                   I3

 
 
Figure B4: Event tree representation of an inspected component: R = Repair or maintenance 
action;  
F = Failure, Ii = Inspection at time ti 
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             a

                                                                                                                                   acrit

                                                                                                                                  alim

                                              ti                                 ti + ∆ti

 
Figure B5: Fatigue failure in the interval ti, ti + ∆ti with a(τ) < alim at the beginning of the 
interval. 
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10. Annex C: Reliability Analysis Principles 
 

10.1. Introduction 

In recent years, practical reliability methods have been developed to help engineers tackle the 
analysis, quantification, monitoring and assessment of structural risks, undertake sensitivity 
analysis of inherent uncertainties and make appropriate decisions about the performance of a 
structure. The structure may be at the design stage, under construction or in actual use. 
 
This Annex C summarizes the principles and procedures used in formulating and solving risk 
related problems via reliability analysis. It is neither as broad nor as detailed as available 
textbooks on this subject, some of which are included in the bibliography. Its purpose is to 
underpin the updating and decision-making methodologies presented in part 2 of this 
document. 
 
Starting from the principles of limit state analysis and its application to codified design, the 
link is made between unacceptable performance and probability of failure. It is important, 
especially in assessment, to distinguish between components and systems. System concepts 
are introduced and important results are summarized. The steps involved in carrying out a 
reliability analysis, whose main objective is to estimate the failure probability, are outlined 
and alternative techniques available for such an analysis are presented. Some 
recommendations on formulating stochastic models for commonly used variables are also 
included. 
 

10.2. Concepts 

10.2.1. Limit States 

The structural performance of a whole structure or part of it may be described with reference 
to a set of limit states which separate acceptable states of the structure from unacceptable 
states. The limit states are divided into the following two categories: 
- ultimate limit states, which relate to the maximum load carrying capacity. 
- serviceability limit states, which relate to normal use. 
 
The boundary between acceptable (safe) and unacceptable (failure) states may be distinct or 
diffuse but, at present, deterministic codes of practice assume the former.Thus, verification of 
a structure with respect to a particular limit state is carried out via a model describing the 
limit state in terms of a function (called the limit state function) whose value depends on all 
relevant design parameters. In general terms, attainment of the limit state can be expressed as: 
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  g (s, r)  = 0        (C.1) 

 
where s and r represent sets of load (actions) and resistance variables. Conventionally, g (s, r) 
≤ 0 represents failure; in other words, an adverse state. 
 
The limit state function, g (s, r), can often be separated into one resistance function, r(.), and 
one loading (or action effect) function, s(.), in which case equation (C.) can be expressed as: 
 

  r (r) - s (s) = 0        (C.2) 
 

10.2.2. Structural Reliability 

Load, material and geometry parameters are subject to uncertainties, which can be classified 
according to their nature, see section 3. They can, thus, be represented by random variables 
(this being the simplest possible probabilistic representation, whereas more advanced models 
might be appropriate in certain situations, such as random fields). The variables S and R are 
often referred to as "basic random variables" (where the upper case letter is used for denoting 
random variables) and may be collectively represented by a random vector X. 
 
In this context, failure is a probabilistic event and its probability of occurrence, Pf, is given 
by: 
 

  Pf  = Prob { g (X) ≤ 0 } = Prob { M ≤ 0 }    (C.3a) 
 

where, M = g (X). Note that M is also a random variable, called the safety margin. 
 
If the limit state function is expressed in the form of eqn (C.2), eqn (C.3a) can be written as 

  Pf = Prob { r (R) ≤ s (S) } = Prob { R ≤ S } 

 
where R = r (R) and S = s (S) are random variables associated with resistance and loading 
respectively. This expression is useful in the context of the discussion in section 2.2 on code 
formats and partial safety factors but will not be further used herein. 
 
The failure probability  defined in eqn (A.5a) can also be expressed as follows: 
 

  
Pf ∫ = fX (x) dx

g(x ) ≤ 0       (C.3b)
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where fX(x) is the joint probability density function of X. 
The reliability, Ps, associated with the particular limit state considered is the complementary 
event, i.e. 
 

  Ps = 1 - Pf        (C.4) 
 

In recent years, a standard reliability measure, the reliability index β, has been adopted which 
has the following relationship with the failure probability 
 

  β = - Φ
-1

(Pf) = Φ
-1

(Ps)       (C.5) 
 

where Φ
-1

(.)  is the inverse of the standard normal distribution function, see Table A.1. 
 

Table C.1: Relationship between β and Pf 
Pf 10-1 10-2 10-3 10-4 10-5 10-6 10-7 

β  1.3 2.3 3.1 3.7 4.2 4.7 5.2 

 
In most engineering applications, complete statistical information about the basic random 
variables X is not available and, furthermore, the function g(.) is a mathematical model which 
idealizes the limit state. In this respect, the probability of failure evaluated from eqn (C.3a) or 
(C.3b) is a point estimate given a particular set of assumptions regarding probabilistic 
modelling and a particular mathematical model for g(.). The uncertainties associated with 
these models can be represented in terms of a vector of random parameters Q, and hence the 
limit state function may be re-written as g(X, Q). It is important to note that the nature of 
uncertainties represented by the basic random variables X and the parameters Q is different. 
Whereas uncetainties in X cannot be influenced without changing the physical characteristics 
of the problem (e.g. changing the steel grade), uncertainties in Q can be influenced by the use 
of alternative methods and collection of additional data. 
 
In this context, eqn (C.3b) may be recast as follows 

  
Pf(θ ∫) = fX|Θ (x | θ) dx

g(x ,θ) ≤ 0      (C.6)
 

where Pf(θ) is the conditional probability of failure for a given set of values of the parameters 
θ and fX|θ (x| θ) is the conditional probability density function of X for given θ. 
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In order to account for the influence of parameter uncertainty on failure probability, one may 
evaluate the expected value of the conditional probability of failure, i.e. 

  
Pf = E [Pf(θ ∫)] = Pf(θ) fΘ (θ) dθ

 θ      (C.7a)
 

where fθ (θ) is the joint probability density function of θ. The corresponding reliability index 
is given by 

  β  = - Φ-1(Pf)         (C.7b) 

The main objective of reliability analysis is to estimate the failure probability (or, the 
reliability index). Hence, it replaces the deterministic safety check with a probabilistic 
assessment of the safety of the structure, e.g. eqn (C.3) or eqn (C.7). Depending on the nature 
of the limit state considered, the uncertainty sources and their implications for probabilistic 
modeling, the characteristics of the calculation model and the degree of accuracy required, an 
appropriate methodology has to be developed. In many respects, this is similar to the 
considerations made in formulating a methodology for deterministic structural analysis but 
the problem is now set in a probabilistic framework. 

 

10.2.3. System Concepts 

Structural design is, at present, primarily concerned with component behaviour. Each limit 
state equation is, in most cases, related to a single mode of failure of a single component.  
 
However, most structures are an assembly of structural components and even individual 
components may be susceptible to a number of possible failure modes. In deterministic terms, 
the former can be tackled through a progressive collapse analysis (particularly appropriate in 
redundant structures), whereas the latter is usually dealt with by checking a number of limit 
state equations. 
 
However, the system behaviour of structures is not well quantified in limit state codes and 
requires considerable innovation and initiative from the engineer. A probabilistic approach 
provides a better platform from which system behaviour can be explored and utilised. This 
can be of benefit in assessment of existing structures where strength reserves due to system 
effects can alleviate the need for expensive strengthening. 
 
There are two fundamental systems, see Fig. C.1: 
 

(1) A series system is a system which fails if one or more of its components fail. 
(2) A parallel system is a system which fails when all its components have failed. 
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The probability of system failure is given by 

 
 Pf, sys = P[E1∪E2∪...∪En] for a series system    (C.8a) 
 Pf, sys = P[E1∩E2∩...∩En] for a parallel system    (C.8b) 
 
where Ei (i=1, ...n) is the event corresponding to failure of the ith component. In the case of 
parallel systems, which are designed to provide some redundancy, it is important to define the 
state of the component after failure. In structures, this can be described in terms of a 
characteristic load-displacement response, see Fig. C.2, for which two convenient 
idealisations are the 'brittle' and the 'fully ductile' case. Intermediate, often more realistic, 
cases can also be defined. 
 
The above expressions can be difficult to evaluate in the case of large systems with 
stochastically dependent components and, for this reason, upper and lower bounds have been 
developed, which may be used in practical applications. In order to appreciate the effect of 
system behaviour on failure probabilities, results for two special systems comprising equally 
correlated components with the same failure probability for each component are shown in Fig. 
C.3(a) and C.3(b). Note that in the case of the parallel system, it is assumed that the 
components are fully ductile. 
 
More general systems can be constructed by combining the two fundamental types. It is fair 
to say that system methods are more developed for skeletal rather than continuous structures. 
Important results from system reliability theory are summarized in section 4. 
 
 

10.3. Component Reliability Analysis 

The framework for probabilistic modeling and reliability evaluation is outlined in this section. 
The focus is on the procedure to be followed in assessing the reliability of a critical 
component with respect to a particular failure mode. 

10.3.1. General Steps 

The main steps in a component reliability analysis are the following: 
 
(1) select appropriate limit state function 
(2) specify appropriate time reference 
(3) identify basic variables and develop appropriate probabilistic models 
(4) compute reliability index and failure probability 
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(5) perform sensitivity studies 
Step (1) is essentially the same as for deterministic analysis. Step (2) should be considered 
carefully, since it affects the probabilistic modeling of many variables, particularly live 
loading. Step (3) is perhaps the most important because the considerations made in 
developing the probabilistic models have a major effect on the results obtained, see section 
3.2. Step (4) should be undertaken with one of the methods summarized in section 3.3, 
depending on the application. Step (5) is necessary insofar as the sensitivity of any results 
(deterministic or probabilistic) should be assessed before a decision is taken. 
 

10.3.2. Probabilistic Modelling 

For the particular failure mode under consideration, uncertainty modeling must be undertaken 
with respect to those variables in the corresponding limit state function whose variability is 
judged to important (basic random variables). Most engineering structures are affected by the 
following types of uncertainty: 
 

- intrincic physical or mechanical uncertainty; when considered at a fundamental level, this 
uncertainty source is often best described by stochastic processes in time and space, 
although it is often modelled more simply in engineering applications through random 
variables. 

- measurement uncertainty; this may arise from random and systematic errors in the 
measurement of these physical quantities 

- statistical uncertainty; due to reliance on limited information and finite samples 
- model uncertainty; related to the predictive accuracy of calculation models used 
 
The physical uncertainty in a basic random variable is represented by adopting a suitable 
probability distribution, described in terms of its type and relevant distribution parameters. 
The results of the reliability analysis can be very sensitive to the tail of the probability 
distribution, which depends primarily on the  type of distribution adopted. A proper choice of 
distribution type is therefore important. 
 
For most commonly encountered basic random variables there have been studies (of varying 
detail) that contain guidance on the choice of distribution and its parameters. If direct 
measurements of a particular quantity are available, then existing, so-called a priori,  
information (e.g. probabilistic models found in published studies) should be used as prior 
statistics with a relatively large equivalent sample size (n' ≈ 50). 
 
The following comments may also be helpful in selecting a suitable probabilistic model. 
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Material properties 
- frequency of negative values is normally zero 
- log-normal distribution can often be used 
- distribution type and parameters should, in general, be derived from large homogeneous 

samples and with due account of established distributions for similar variables (e.g. for a 
new high strength steel grade, the information on properties of existing grades should be 
consulted); tests should be planned so that they are, as far as possible, a realistic description 
of the potential use of the material in real applications. 

Geometric parameters 
- variability in structural dimensions and overall geometry tends to be small 
- dimensional variables can be adequately modelled by the normal or log-normal distribution  
- if the variable is physically bounded, a truncated distribution may be appropriate (e.g. 

location of reinforcement); such bounds should always be carefully considered to avoid 
entering into physically inadmissible ranges 

- variables linked to manufacturing can have large coefficients of variation (e.g. 
imperfections, misalignments, residual stresses, weld defects). 

Load variables 
- loads should be divided according to their time variation (permanent, variable, accidental) 
- in certain cases, permanent loads consist of the sum of many individual elements; they may 

be represented by a normal distribution 
- for single variable loads, the form of the point-in-time distribution is seldom of immediate 

relevance; often the important random variable is the magnitude of the largest extreme load 
that occurs during a specified reference period for which the probability of failure is 
calculated (e.g. annual, lifetime) 

- the probability distribution of the largest extreme could be approximated by one of the 
asymptotic extreme-value distributions (Gumbel, sometimes Frechet) 

- when more than one variable loads act in combination, load modelling is often undertaken 
using simplified rules suitable for FORM/SORM analysis. 

 
In selecting a distribution type to account for physical uncertainty of a basic random variable 
afresh, the following procedure may be followed: 
 

- based on experience from similar type of variables and physical knowledge, choose a set of 
possible distributions 

- obtain a reasonable sample of observations ensuring that, as far as possible, the sample 
points are from a homogeneous group (i.e. avoid systematic variations within the sample) 
and that the sampling reflects potential uses and applications 
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- evaluate by an appropriate method the parameters of the candidate distributions using the 
sample data; the method of maximum likelihood is recommended but evaluation by 
alternative methods (moment estimates, least-square fit, graphical methods) may also be 
carried out for comparison. 

- compare the sample data with the resulting distributions; this can be done graphically 
(histogram vs. pdf, probability paper plots) or through the use of goodness-of-fit tests (Chi-
square, Kolmogorov-Smirnov tests) 

 
If more than one distributions give equally good results (or if the goodness-of-fit tests are 
acceptable to the same significance level), it is recommended to choose the distribution that 
will result in the smaller reliability. This implies choosing distributions with heavy left tails 
for resistance variables (material properties, geometry excluding tolerances) and heavy right 
tails for loading variables (manufacturing tolerances, defects and loads). 
 
Capturing the essential features of physical uncertainty in a load or in a structure property 
through a random variable model is perhaps the simplest way of modeling uncertainty and 
quantifying its effect on failure probability. In general, loads are functions of both time and 
position on any particular structure. Equally, material properties and dimensions of even a 
single structural member, e.g. a RC floor slab, are functions which vary both in time and in 
space. Such random functions are usually denoted as random (or stochastic) processes when 
time variation is the most important factor and as random fields when spatial variation is 
considered. 
 
Fig. C.4(a) shows schematically a continuous stochastic process, e.g. wind pressure at a 
particular point on a wall of a structure. The trace of this process over time is obtained 
through successive realisations of the underlying phenomenon, in this case wind speed, which 
is clearly a random variable taking on different values within each infinitesimally small time 
interval, δt. 
Fig. C.4(b) depicts a two-dimensional random field, e.g. the spatial variation of concrete 
strength in a floor slab just after construction. Once again, a random variable, in this case 
describing the possible outcomes of, say, a core test obtained from any given small area, δA, 
is the basic kernel from which the random field is built up. 
 
In considering either a random process or a random field, it is clear that, apart from the 
characteristics associated with the random variable describing uncertainty within a small unit 
(interval or area), laws describing stochastic dependence (or, in simpler terms, correlation) 
between outcomes in time and/or in space are very important. 
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The other three types of uncertainty mentioned above (measurement, statistical, model) also 
play an important role in the evaluation of reliability. As mentioned in section 2.3, these 
uncertainties are influenced by the particular method used in, for example, strength analysis 
and by the collection of additional (possibly, directly obtained) data. These uncertainties 
could be rigorously analysed by adopting the approach outlined by eqns (C.8) and (C.9). 
However, in many practical applications a simpler approach has been adopted insofar as 
model (and measurement) uncertainty is concerned based on the differences between results 
predicted by the mathematical model adopted for g(x) and some more elaborate model 
believed to be a closer representation of actual conditions. In such cases, a model uncertainty 
basic random variable Xm is introduced where 

Xm = actual value
predicted value

 
 

and the following comments offer some general guidance in estimating the statistics of Xm: 
- the mean value of the model uncertainty associated with code calculation models can be 

larger than unity, reflecting the in-built conservatism of code models 
- the model uncertainty parameters of a particular calculation model may be evaluated vis-a-

vis physical experiments or by comparing the calculation model with a more detailed model 
(e.g. finite element model) 

- when experimental results are used, use of measured rather than nominal or characteristic 
quantities is preferred in calculating the predicted value 

- the use of numerical experiments (e.g. finite element models) has some advantages over 
physical experiments, since the former ensure well-controlled input. 

- the choice of a suitable probability distribution for Xm is often governed by mathematical 
convenience and a normal distribution has been used extensively. 

 

10.3.3. Computation of Failure Probability 

As mentioned above, the failure probability of a structural component with respect to a single 
failure mode is given by 

  
Pf ∫ = fX (x) dx

g(x ) ≤ 0       (C.3b)
 

where X is the vector of basic random variables, g(x) is the limit state (or failure) function for 
the failure mode considered and fX(x) is the joint probability density function of X. 
 
An important class of limit states are those for which all the variables are treated as time 
independent, either by neglecting  time variations in cases where this is considered acceptable 
or by transforming time-dependent processes into time-invariant variables (e.g. by using 
extreme value distributions). The methods commonly used for calculating Pf in such cases are 



 
 

 42 

outlined below. Guidelines on how to deal with time-dependent problems are given in section 
5. Note that after calculating Pf via one of the methods outlined below, or any other valid 
method, a reliability index may be obtained from equation (C.5), for comparative or other 
purposes. 
Asymptotic approximate methods 

Although these methods first emerged with basic random variables described through 'second-
moment' information (i.e. with their mean value and standard deviation, but without assigning 
any probability distributions), it is nowadays possible in many cases to have a full description 
of the random vector X (as a result of data collection and probabilistic modelling studies). In 
such cases, the probability of failure could be calculated via first or second order reliability 
methods (FORM and SORM respectively). Their implementation relies on: 
(1) Transformation techniques: 

 T : X = (X1, X2, ... Xn)  → U = (U1, U2, ... Un)  (C.9) 

where U1, U2, ... Un are independent standard normal variables (i.e. with zero mean value and 
unit standard deviation). Hence, the basic variable space (including the limit state function)  is 
transformed into a standard normal space, see Fig. C.5. The special properties of the standard 
normal space lead to several important results, as discussed below. 
(2) Search techniques: 

In standard normal space, the objective is to determine a suitable checking point: this is 
shown to be the point on the limit-state surface which is closest to the origin, the so-called 
'design point'. In this rotationally symmetric space, it is the most likely failure point, in other 
words its co-ordinates define the combination of variables that are most likely to cause 
failure. This is because the joint standard normal density function, whose bell-shaped peak 
lies directly above the origin, decreases exponentially as the distance from the origin 
increases. To determine this point, a search procedure is required in all but the most simple of 
cases (the Rackwitz-Fiessler algorithm is commonly used). 
Denoting the co-ordinates of this point by 

 u* = (u1
*,  u2

*,  ...  un*)  
its distance from the origin is clearly equal to 

 ∑
=

n

1i

2/12*
i )u(  

This scalar quantity is known as the Hasofer-Lind reliability index, βHL, i.e. 

 ∑
=

=
n

1i

2/12*
iHL )u(β         (C.10)

 

Note that u* can also be written as 

 u* = βHL α         (C.11a) 

where α = (α1, α2, ... αn) is the unit normal vector to the limit state surface at u*, and, hence, 
αi (i=1,...n) represent the direction cosines at the design point. These are also known as the 
sensitivity factors, as they provide an indication of the relative importance of the uncertainty 
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in basic random variables on the computed reliability. Their absolute value ranges between 
zero and unity and the closer this is to the upper limit, the more significant the influence of 
the respective random variable is to the reliability. The following expression is valid for 
independent variables 

 ∑
=

=
n

1i

2
1 1α          

(C.11b)
 

(3) Approximation techniques: 

Once the checking point is determined, the failure probability can be approximated using 
results applicable to the standard normal space. Thus, in a first-order approximation, the limit 
state surface is approximated by its tangent  hyperplane at the design point. The probability 
content of the failure set is then given by 

 PfFORM =  Φ(−βHL)        (C.12a)
 

In some cases, a higher order approximation of the limit state surface at the design point is 
merited, if only to check the accuracy of FORM. The result for the probability of failure 
assuming a quadratic (second-order) approximation of the limit state surface is asymptotically 
given by           

∏
−

=

−−−Φ=
1

1

2/1)1()(
n

j
jHLHLfSORMP κββ       

(C.12b)
 

for  βHL → ∞ , where κj are the principal curvatures of the limit state surface at the design 
point. An expression applicable to finite values of βHL is also available. 
 
Simulation Methods 

In this approach, random sampling is employed to simulate a large number of (usually 
numerical) experiments and to observe the result. In the context of structural reliability, this 
means, in the simplest approach, sampling the random vector X to obtain a set of sample 
values. The limit state function is then evaluated to ascertain whether, for this set, failure (i.e. 
g(x)≤0) has occurred. The experiment is repeated many times and the probability of failure, 
Pf, is estimated from the fraction of trials leading to failure divided by the total number of 
trials. This so-called Direct or Crude Monte Carlo method is not likely to be of use in 
practical problems because of the large number of trials required in order to estimate with a 
certain degree of confidence the failure probability. Note that the number of trials increases as 
the failure probability decreases. Simple rules may be found, of the form N > C/Pf, where N is 
the required sample size and C is a constant related to the confidence level and the type of 
function being evaluated. 
Thus, the objective of more advanced simulation methods, currently used for reliability 
evaluation, is to reduce the variance of the estimate of Pf. Such methods can be divided into 
two categories, namely indicator function methods and conditional expectation methods. 

Kommentar [F1]:  
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An example of the former is Importance Sampling, where the aim is to concentrate the 
distribution of the sample points in the vicinity of likely failure points, such as the design 
point obtained from FORM/SORM analysis. This is done by introducing a sampling function, 
whose choice would depend on a priori information available, such as the co-ordinates of the 
design point and/or any estimates of the failure probability. In this way, the success rate 
(defined here as a probability of obtaining a result in the failure region in any particular trial) 
is improved compared to Direct Monte Carlo. Importance Sampling is often used following 
an initial FORM/SORM analysis. A variant of this method is Adaptive Sampling, in which 
the sampling density is updated as the simulation proceeds. Importance Sampling could be 
performed in basic variable or standard normal space, depending on the problem and the form 
of prior information. 
 
A powerful method belonging to the second category is Directional Simulation. It achieves 
variance reduction using conditional expectation in the standard normal space, where a 
special result applies pertaining to the probability bounded by a hypershere centred at the 
origin. Its efficiency lies in that each random trial generates precise information on where the 
boundary between safety and failure lies. However, the method does generally require some 
iterative calculations. It is particularly suited to problems where it is difficult to identify 
'important' regions (perhaps due to the presence of multiple local design  points). 
 
The two methods outlined above have also been used in combination, which indicates that 
when simulation is chosen as the basic approach for reliability assessment, there is scope to 
adapt the detailed methodology to suit the particular problem in hand. 
 

10.3.4. Recommendations 

As with any other analysis, choosing a particular method must be justified through experience 
and/or verification. Experience shows that FORM/SORM estimates are adequate for a wide 
range of problems. However, these approximate methods have the disadvantage of not being 
quantified by error estimates, except for few special cases. As indicated, simulation may be 
used to verify FORM/SORM results, particularly in situations where multiple design points 
might be suspected. Simulation results should include the variance of the estimated 
probability of failure, though good estimates of the variance could increase the computations 
required. When using FORM/SORM, attention should be given to the ordering of dependent 
random variables and the choice of initial points for the search algorithm. Not least, the 
results for the design point should be assessed to ensure that they do not contradict physical 
reasoning. 
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10.4. System Reliability Analysis 

As discussed in section 3, individual component failure events can be represented by failure 
boundaries in basic variable or standard normal space. System failure events can be similarly 
represented, see Fig. C.6(a) and C.6(b), and, once more, certain approximate results may be 
derived as an extension to FORM/SORM analysis of individual components. In addition, 
system analysis is sometimes performed using bounding techniques and some relevant results 
are given below. 
 

10.4.1. Series systems 

The probability of failure of a series system with m components is defined as 

 
Pf sys  = P Fj∪

j = 1

m

        
(C.13)

 
where, Fj is the event corresponding to the failure of the jth component. By describing this 
event in terms of a safety margin Mj  
           (C.14)  

)(]0[][ jjj MPFP β−Φ≈≤=        

where βj is its corresponding FORM reliability index, it can be shown that in a first-order 
approximation 

 Pf sys  = 1 − Φm β ; ρ         
(C.15a)

 
where Φm[.] is the multi-variate standard normal distribution function, β  is the (m x 1) vector 
of component reliability indices and  ρ  is the (m x m) correlation matrix  between safety 
margins with elements given by 

 ∑
=

=
n

i
ikijjk

1

ααρ  ,j, k = 1, 2, ...,m     
(C.15b)

 

where αij is the sensitivity factor corresponding to the ith random variable in the jth margin. 
In some cases, especially when the number of components becomes large, evaluation of 
equation (C.15) becomes cumbersome and bounds to the system failure probability may prove 
sufficient. 
Simple first-order linear bounds are given by 
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but these are likely to be rather wide, especially for large m, in which case second-order linear 
bounds (Ditlevsen bounds) may be needed. These are given by   

(A.20b)
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The narrowness of these bounds depends in part on the ordering of the events. The optimal 
ordering may differ between the lower and the upper bound. In general, these bounds are 
much narrower than the simple first-order linear bounds given by equation (C.16a). The 
bisections of events may be calculated using a first-order approximation, which appears 
below in the presentation of results for parallel systems. 
 

10.4.2. Parallel Systems 

Following the same approach and notation as above, the failure probability of a parallel 
system with m components is given by 
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and the corresponding first-order approximation is 

 Pf sys   = Φm − β ; ρ          (C.18)
 

Simple bounds are given by 
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These are usually too wide for practical applications. An improved upper bound is 
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The error involved in the first-order evaluation of the intersections, P[Fj ∩ Fk], is, to a large 
extent, influenced by the non-linearity of the margins at their respective design points. In 
order to obtain a better estimate of the intersection probabilities, an improvement on the 
selection of linearisation points has been suggested. 
 
 
10.5. Time-Dependent Reliability 

10.5.1. General Remarks 

Even in considering a relatively simple safety margin for component reliability analysis such 
as M = R - S, where R is the resistance at a critical section in a structural member and S is the 
corresponding load effect at the same section, it is generally the case that both S and 
resistance R are functions of time. Changes in both mean values and standard deviations could 
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occur for either R(t) or S(t). For example, the mean value of R(t)  may change as a result of 
deterioration (e.g. corrosion of reinforcement in an RC bridge implies loss of area, hence a 
reduction in the mean resistance) and its standard deviation may also change (e.g. uncertainty 
in predicting the effect of corrosion on loss of area may increase as the periods considered 
become longer). On the other hand, the mean value of S(t)  may increase over time (e.g. due 
to higher traffic flow and/or higher individual vehicle weights) and, equally, the estimate of 
its standard deviation may increase due to lower confidence in predicting the correct mix of 
traffic for longer periods. A time-dependent reliability problem could thus be schematically 
represented as in Fig. C.7, the diagram implying that, on average, the reliability decreases 
with time. Although this situation is usual, the converse could also occur in reliability 
assessment of existing structures, for example through strengthening or favourable change in 
use. 
 
Thus, the elementary reliability problem described through equations (C.3a) and (C.3 b) may 
now be formulated as: 
 
  Pf (t)  = Prob{ R (t) ≤ S (t) }= Prob { g (X(t)) ≤ 0 } 00,0 (C.20a) 
 
where g (X(t)) = M(t) is a time-dependent safety margin, and 

  

Pf (t) = fX(t) (x(t)) dx(t)
g(x(t)) ≤ 0      (C.20b)

 
is the instantaneous failure probability at time t, assuming that the structure was safe at time 
less than t. 
 
In time-dependent reliability problems, interest often lies in estimating the probability of 
failure over a time interval, say from 0 to tL. This could be obtained by integrating Pf(t) over 
the interval [0, tL], bearing in mind the correlation characteristics in time of the process X(t) -
or, sometimes more conveniently, the process R(t), the process S(t), as well as any cross 
correlation between R(t) and S(t). Note that the load effect process S(t) is often composed of 
additive components, S1(t), S2(t), ..., for each of which the time fluctuations may have 
different features (e.g. continuous variation, pulse-type variation, spikes). 
 
Interest may also lie in predicting when S(t) crosses R(t) for the first time, see Figure C.8, or 
the probability that such an event would occur within a specified time interval. These 
considerations give rise to so-called ‘crossing’ problems, which are treated using stochastic 
process theory. A key concept for such problems is the rate at which a random process X(t) 
‘upcrosses’ (or crosses with a positive slope) a barrier or level ξ, as shown in Figure A.9. This 
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upcrossing rate is a function of the joint probability density function of the process and its 
derivative, and is given by Rice’s formula 

 
νξ

+ = x
0

∞

 f XX(ξ,  x ) dx 
       (C.21) 

 
where the rate in general represents an ensemble average at time t. For a number of common 
stochastic processes, useful results have been obtained starting from Equation (C.21). An 
important simplification can be introduced if individual crossings can be treated as 
independent events and the occurences may be approximated by a Poisson distribution, which 
might be a reasonable assumption for certain rare load events. 
 
Another class of problems calling for a time-dependent reliability analysis are those related to 
damage accumulation, such as fatigue and fracture. This case is depicted in Fig. C.10 via a 
fixed threshold (e.g. critical crack size) and a monotonically increasing time-dependent load 
effect or damage function (e.g. actual crack size at any given time). 
 
It is evident from the above remarks that the best approach for solving a time-dependent 
reliability problem would depend on a number of considerations, including the time frame of 
interest, the nature of the load and resistance processes involved, their correlation properties 
in time, and the confidence required in the probability estimates. All these issues may be 
important in determining the appropriate idealisations and approximations. 
 

10.5.2. Transformation to Time-Independent Formulations 

Although time variations are likely to be present in most structural reliability problems, the 
methods outlined in Sections 3 and 4 have gained wide acceptance, partly due to the fact that, 
in many cases, it is possible to transform a time dependent failure mode into a corresponding 
time independent mode. This is especially so in the case of overload failure, where individual 
time-varying actions, which are essentially random processes, p(t), can be modelled by the 
distribution of the maximum value within a given reference period T, i.e. X = maxT{ p(t)} 
rather than the point-in-time distribution. For continuous processes, the probability 
distribution of the maximum value (i.e. the largest extreme) is often approximated by one of 
the asymptotic extreme value distributions. Hence, for structures subjected to a single time-
varying action, a random process model is replaced by a random variable model and the 
principles and methods given previously may be applied. 
 
The theory of stochastic load combination is used in situations where a structure is subjected 
to two or more time-varying actions acting simultaneously. When these actions are 
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independent, perhaps the most important observation is that it is highly unlikely that each 
action will reach its peak lifetime value at the same moment in time. Thus, considering two 
time-varying load processes p1(t),  p2(t), 0 ≤ t ≤ T, acting simultaneously, for which their 
combined effect may be expressed as a linear combination p1(t)+ p2(t), the random variable 
of interest is: 
 
 X =  maxT{ p1(t)+ p2(t)}       (C.22a) 
 
If the loads are independent, replacing X by maxT{p1(t)} + maxT{p2(t)} leads to very 
conservative results. However, the distribution of X can be derived in few cases only. One 
possible way of dealing with this problem, which also leads to a relatively simple 
deterministic code format, is to replace X with the following 
 
 

 
 
 
   maxT{ p1(t)} + p2(t) 

 X' =  maxT         (C.22b) 
      p1(t) + maxT{ p2(t)} 
 
 
This rule (Turkstra's rule) suggests that the maximum value of the sum of two independent 
load processes occurs when one of the processes attains its maximum value. This result may 
be generalised for several independent time-varying loads. The conditions which render this 
rule adequate for failure probability estimation are discussed in standard texts. Note that the 
failure probability associated with the sum of a special type of independent identically 
distributed processes (so-called FBC process) can be calculated in a more accurate way, as 
will be outlined below. Other results have been obtained for combinations of a number of 
other processes, starting from Rice’s barrier crossing formula. 
 
The FBC (Ferry Borges-Castanheta) process is generated by a sequence of independent 
identically distributed random variables, each acting over a given (deterministic) time 
interval. This is shown in Fig. C.11 where the total reference period T is made up of ni 
repetitions where ni=T/τi. Hence, the FBC process is a rectangular pulse process with changes 
in amplitude occurring at equal intervals. Because of independence, the maximum value in 
the reference period T is given by 
 

{ 
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 FmaxTXi(xi)= [FXi(xi)]ni
       (C.23) 

 
When a number of FBC processes act in combination and the ratios of their repetition 
numbers within a given reference period are given by positive integers it is, in principle, 
possible to obtain the extreme value distribution of the combination through a recursive 
formula. More importantly, it is possible to deal with the sum of FBC processes by 
implementing the Rackwitz-Fiessler algorithm in a FORM/SORM analysis. 
 
A deterministic code format, compatible with the above rules, leads to the introduction of 
combination factors, ψoi, for each time-varying load i. In principle, these factors express 
ratios between fractiles in the extreme value and point-in-time distributions so that the 
probability of exceeding the design value arising from a combination of loads is of the same 
order as the probability of exceeding the design value caused by one load. For time-varying 
loads, they would depend on distribution parameters, target reliability and FORM/SORM 
sensitivity factors and on the frequency characteristics (i.e. the base period assumed for 
stationary events) of loads considered within any particular combination. 

 

10.5.3. Introduction to Crossing Theory 

In considering a time-dependent safety margin, i.e. M(t) = g (X(t) ), the problem is to 
establish the probability that M(t) becomes zero or less in a reference time period, tL. As 
mentioned previously, this constitutes a so-called 'crossing' problem. The time at which M(t)  
becomes less than zero for the first time is called the 'time to failure' and is a random variable, 
see Fig. C.12(a), or, in a basic variable space, Fig. C.12(b). The probability that M(t) ≤0 
occurs during tL is called the'first-passage' probability. Clearly, it is identical to the 
probability of failure during time tL. 
 
The determination of the first passage probability requires an understanding of the theory of 
random processes. Herein, only some basic concepts are introduced in order to see how the 
methods described above have to be modified in dealing with crossing problems. 
The first-passage probability, Pf(t) during a period [0, tL] is 
 

 Pf (tL) = 1 - P[  N (tL)=0 | X (0) ∈D] P[X (0) ∈D]     (C.24a) 

where X(0)∈D signifies that the process X(t) starts in the safe domain and N(tL) is the number 
of outcrossings in the interval [0, tL]. The second probability term is equivalent to 1 - Pf(0), 
where Pf(0) is the probability of failure at t=0. Equation (C.28a) can be re-written as 
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 Pf(tL) = Pf(0) + (1 - Pf(0)) (1 - P[N(tL)=0])     (C.24b) 
from which different approximations may be derived depending on the relative magnitude of 
the terms. A useful bound is 
 

 Pf (tL) ≤ Pf (0) + E[N (tL)]        (C.25) 

where the first term may be calculated by FORM/SORM and the expected number of 
outcrossings, E[N(tL)], is calculated by Rice's formula or one of its generalisations. 
Alternatively, parallel system concepts can be employed. 
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10.6. Figures 

 

 
Figure C.1: Schematic representation of series and parallel systems 

 
 

 
 

Figure C.2: Idealised load-displacement response of structural elements 
 

 
 

Figure C.3: Effect of element correlation and system size on failure probability  
(a) series system (b) parallel system 

 



 
 

 53 

 
 

 
Figure C.4: Schematic representations 

(a) random process  (b) random field 
 

 
 

Figure C.5: Limit state surface in basic variable and standard normal space 
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Figure C.6(a): Failure region as union of component failure events for series system 

 

 
Figure C.6(b): Failure region as intersection of component failure events for parallel system 

 
 

 
 

Figure C.7: General time-dependent reliability problem 
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Figure C.8: Schematic representation of crossing problems 
(a) slowly varying resistance (b) rapidly varying resistance 

 

 
 

Figure C.9: Fundamental barrier crossing problem 
 

 
 

Figure C.10: Damage accumulation problem 
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Figure C.11: Realization of an FBC process 
 
 
 
 

 
 
 

Figure C.12: Time-dependent safety margin and schematic representation of vector 
outcrossing 
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11. Annex D:Bayesian Interpretation of Probabilities 
 

11.1. Introduction 

 
This JCSS Probabilistic Model Code offers distribution functions and corresponding 
parameter models for loads and structural properties in order to carry out failure probability 
calculations for comparison with specified reliability targets. This annex gives guidance on 
the interpretation of both input and results of those calculations. 
 
For the sake of discussion three possible alternatives of interpretation will be 
mentioned: 
 
1. the frequentistic interpretation  
2. a purely formal interpretation 
3. the Bayesian interpretation 
 
They will be discussed in the following section. 
 

11.2. Discussion 

 
The frequentistic interpretation is quite straight forward. It means that if one observes for a 
long period of time, say T, a large set of say N similar structures, all having a failure rate of p 
[1/year], one expects the number of failures not to deviate too far from pTN. The deviation 
should fall within the rules of combinatory probabilistic calculations. Such an interpretation, 
however, can only be justified in a stationary world where the amount of statistical or 
theoretical evidence for the all distribution functions is very large. It should be clear that such 
a frequentistic interpretation of the failure probabilities is out of the question in the field of 
structural design. In almost all cases the data is too scarce and often only of a very generic 
nature. Note, however, that a frequentistic interpretation still can be used in a conditional 
sense. The statement that, given a set of statistical models for the various variables,  a 
structure has some failure probability, is meaningful and helpful. 
 
The interpretation mentioned above given as second, that is the formal approach, gives full 
credit to the fact that the numbers used in the analysis are based on (common) ideas rather 
than statistical evidence. The probabilistic design is considered as a strictly formal procedure 
without any meaning or interpretation. Such a procedure can be believed to be a more rich 
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and consistent design procedure compared to for instance a Partial Factor Method or 
Allowable Stress method. The basic philosophy is that a probabilistic design procedure, 
running on the average the same design result as its successful predecessors, is a at least as 
good as or even better then the other methods. So calibration on the average result is the key 
point and the absolute values of the distributions and the failure probabilities have no 
meaning at all. An alternative code, prescribing higher standard deviations (resulting in higher 
failure probabilities) and corresponding higher target probabilities is considered as fully 
equivalent. 
 
To some extent this formal interpretation has many advantages, but is difficult to maintain. In 
many cases, it is at least convenient if the various values in the probabilistic calculations have 
some meaning in the real world. It  should be possible, for instance, to consider the 
distribution functions in this code as the best estimate to describe our lack of knowledge and 
use them as priors for Bayesian updating procedures in the case of new data. It should also be 
possible to use the models for decision making in structural design and optimisation 
procedures for target reliabilities. If this cannot be done the method loses many features of its 
attraction. 
 
This leads into the direction of a Bayesian probability interpretation, where probabilities are 
considered as the best possible expression of the degree of belief in the occurrence of a 
certain event. The Bayesian interpretation does not claim that probabilities are direct and 
unbiased predictors of occurrence frequencies that can be observed in practice. The only 
claim is that, if the analysis is carried out carefully, the probabilities will be correct if 
averaged over a large number of decision situations. The requirement to fulfil that claim, of 
course, is that the purely intuitive part is neither systematically too optimistic nor 
systematically too pessimistic. The calibration to common practice on the average may be 
considered as an adequate means to achieve that goal. 
 
The above statement may sound vague and unsatisfactory at first sight. There seems to be an 
almost unlimited freedom to make unproven assessments based on a very individual intuition 
only. In this respect, one should keep in mind that: 
 
(1) where data is lacking, statistical parameters like means and standard deviations are not 

taken as deterministic point estimates but as random quantities usually with a wide scatter; 
in this code the scatter is not the opinion of an individual engineer, but it is based on the 
judgement of a group of engineers. 
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(2) where data is available, estimates can (and often should) be improved on the basis of it; 
the minimum requirement is that intuitive probability models should not be in 
contradiction with the data. 

 
Within the Bayesian Probability Theory these starting points have been rigorously formalised. 
As long as no data is available, a so called uninformative or vague prior estimate is chosen. 
Given observations, the prior can be updated to a so called posterior distribution, using 
Bayes’ Theorem. For details the reader is referred to Part 3.0, Material Properties, General 
Principles, Annex A. It should be noted that, in the case of sufficient data, this procedure will 
tend to probability statements that can be interpreted in a purely frequentistic way.  
 
Data may of course become available in blocks: in such a case the posterior distribution 
resulting from the first block may be used as a prior distribution for the second data block. 
That is, in fact, precisely what is present in the various chapters of Parts 2 and 3: the 
distributions given can often be considered as “data based priors” based on data from a 
generic world wide population. These models can be “updated” if data of a specific site or a 
specific producer are available.  
 
Practically spoken, lack of statistical data may lead to (1) uncertainties in statistical 
parameters (mean, standard deviation, etc) and (2) uncertainty in the type of distribution  
(normal, lognormal, Weibull, etc). It turns out that the latter type of uncertainty needs 
unrealistic much data to get a substantial reduction, while calculation results may be very 
sensitive to it. Also, such large data sets fulfilling the stationarity requirement may hardly be 
available. It is exactly on this point that there is a need to standardise the input. It should be 
noted that in this code most distribution types have the nature of a ”point estimate”, 
neglecting to some extend the distribution uncertainty. 
 

11.3. Conclusion 

 
The conclusion of the foregoing is that distributions and probabilities in this Model Code 
should be given a Bayesian degree of belief type interpretation. One may use the distributions 
as a start for updating in the presence of specific structure related data and as a basis for 
optimisation. 
 
Some reflections for closure: 
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(1) The numbers given in this code do not include the effect of gross errors. This is one of the 
main sources of the deviation between calculated probabilities and failure frequencies in 
practice. 
 
(2) The justification for a Bayesian probabilistic approach in decision making is that it makes 
the anyhow inevitable judgement part explicit and minimises the influence of it. The return to 
so called deterministic procedures because of a lack of statistical data is no realistic 
alternative. 
 
(3) In the Bayesian procedure the prior, if no explicit data is available, is often referred to as 
“subjective” or “person dependent”. In the case of this code this would not be the right 
terminology. The priors given are not the result of the ideas and experience of a single 
individual, but of a large group of experts. This gives the distributions some flavour of 
objectivity, however, of course, still on an intuitive basis. 
 
(4) The system of given distributions and their use in Bayesian updating and Bayesian 
decision procedures may be considered as a formal procedure in itself. 
 
 


