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Abstract

The aim of the present report is to propose various methods whereby the number of random vari-
ables can be reduced without compromising the accuracy of the reliability calculation.
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1 Introduction

In the reliability analysis of a complex engineering structure a very large number of the system parameters

can be considered to be random variables. The difficulty in computing the failure probability increases

rapidly with the number of variables, and the aim of the present report is to consider methods whereby the

number of variables can be reduced without compromising the accuracy of the reliability calculation. The

most common methods of reliability prediction are (see, for example, the books by Thoft-Christensen and

Baker, 1982, Augustiet al., 1984, Tichy, 1993, Ditlevsen and Madsen, 1996, Melchers, 1999) (a) FORM

(First Order Reliability Method), (b) SORM (Second Order Reliability Method), and (c) asymptotic reli-

ability analysis. In each case the efficiency of the method depends on the efficient computation of the so

calledreliability index, commonly denoted by ‘β’. The geometric interpretation of the reliability index is

that it is the minimum distance of the failure surface from the origin in a transformed space (referred as the

z-space) where all the random variables defining the uncertainties of the system are Gaussian, normalized

and uncorrelated. The present reduction methods are based on the sensitivity of the failure surface in the

z-space. If the failure surface is close to linear, then the values ofβ obtained from these methods are close

to the exact value ofβ obtained using the full set of random variables. However, if the failure surface

is significantly nonlinear, the different reduction methods introduce different kind of errors. The nature

of these errors are studied using a wide range of numerical examples. It is shown that the values ofβ

obtained using the proposed reduction methods have acceptable accuracy for many large scale structural

engineering problems.

2 Approximate Reliability Analysis Methods

Suppose the random variables describing the uncertainties of the structure and loading are considered to

form a vectory ∈ Rn. The statistics of the system are fully described by the joint probability density

functionp(y). In general the random variablesy are non-Gaussian. In principle these random variables

can be transformed to a set of uncorrelated Gaussian random variables via the Rosenblatt transformation

(Rosenblatt, 1952). Further, they can be scaled so that each random varibles has zero mean and unit

variance. Suppose these transformed and scaled random variables arex ∈ Rn with a joint probability

density functionp(x). For a given set of variablesx the structure will either fail under the applied (random)

loading or will be safe. The condition of the structure for everyx can be described by a safety marging(x)

so the structure has failed ifg(x) ≤ 0 and is safe ifg(x) > 0. Thus the probability of failure is given by

Pf =

∫
g(x)≤0

p(x)dx. (1)
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The functiong(x) is also known as failure surface or limit-state function. The central theme of a reliability

analysis is to evaluate the multidimensional integral (1). For most real-life cases the dimentionality of the

integral is large and consequently the exact evaluation of the integral in equation (1) is not possible. For

this reason some kind of approximate method is required to evaluate this integral. Using the first-order

reliability method (FORM) the probability of failure is given by

Pf = Φ(−β) with β = (x∗
T

x∗)1/2 (2)

wherex∗, the ‘design point’ is the solution of following optimization problem

minβ = (xT x)1/2 subject to g(x) = 0. (3)

Once the reliability index orβ is known other more accurate approximate reliability analyses, for exam-

ple, second-order reliability method (SORM) or asymptotic reliability method, can be performed. Thus

the calculation of the design point and the reliability index is very crucial for all approximate reliability

methods. Purpose of this article is to propose few methods for efficient calculation ofx∗ andβ. Proposed

methods are based on reduction of random variables.

3 Method 1: Gradient Projection Method

For some pointx in Rn we can have the first-order Taylor series expansion ofg(x) aboutx∗

g(x) ≈ g(x∗) + (x − x∗)T ∂g(x)

∂x
|x=x∗ (4)

If g(x) is linear then
∂g(x)

∂x
is independent ofx. In this casex∗ will be simply the projection of the origin

(x = 0) on g(x) = 0 (see Melchers, 1999, Chapter 3). Also note that the outward normal vector to the

hypersurfaceg(x) = 0 is

ci = λ
∂g(x)

∂xi

|x=0. (5)

Assume that∇g =

{
∂g(x)

∂xi

}
∈ Rn is normalized so that∇gT ∇g = 1. Then for linearg(x) it can be

shown that

x∗ = −β∇g. (6)

Motivated by this, we expressx by

x = v∇g (7)

wherev ∈ R is a new random variable. In view of (7), the constrained optimization problem (3) becomes

a simple search problem, that is we need to solve forv such thatg(v∇g) = 0 or g′(v) = 0. Here
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g′(•) = g(•∇g) is a (non-linear) function of asinglevariablev. Comparing (6) and (7) it is clear that

v = −β.

This method yields accurate result wheng(x) is linear or very close to linear. This is because for linear

g(x), ∇g is independent of the choice ofx so that the direction of the outward normal from the failure

surface does not change with position along the failure surface. For this reason∇g|x=0 becomes the

unit vector along truex∗ and consequentlyβ becomes simply the ‘length’ of this vector from the origin

to the failure surface. Figure 1 shows a linear failure surface in a two dimensional spaceR2. The unit

vector∇g|x=0 is shown by the arrow. The pointx∗ is obtained by projecting this unit vector to the failure

surface. The length of this projection isβ.
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Figure 1: Linear failure surface inR2: g(x) ≡ g(x1, x2) = x1 − 2x2 + 10,
x∗ = {−2, 4} andβ = 4.472.

These simple facts do not hold wheng(x) is a nonlinear function. In this case∇g depends on the choice

of x and the direction of the outward normal from the failure surface changes with position along the

failure surface. Therefore∇g|x=0 is in general not the unit vector along truex∗. To solve this problem

we propose an iterative method so that the∇g is updated at each iteration step. We first obtain an initial
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x∗, sayx∗0, by projecting∇g|x=0 to the failure surface. Next we use this point to obtain a new unit vector

∇g|x=x∗
0
. Projecting this vector from the origin to the failure surface we obtain the next estimate ofx∗,

sayx∗1. The method then uses this point to calculate∇g and continues until two successive estimates of

design points are close enough. In summary, for nonlinearg(x), the iterative procedure can be described

as follows:

1. For k = 0, selectx(k) = 0, a small value ofε, sayε = 0.001 and a large value ofβ(k), sayβ(k) = 10.

2. Calculate∇g
(k)
i =

∂g(x)

∂xi

|x=x(k) for i = 1, · · · , n. Construct the vector∇g(k) =
{
∇g

(k)
i

}
∈ Rn

and normalize so that∇g(k)T ∇g(k) = 1

3. Solveg(v∇g(k)) = 0 for v.

4. Increase the index:k = k + 1; denoteβ(k) = −v andx(k) = v∇g(k).

5. Denoteδβ = β(k−1) − β(k).

6. (a) If δβ < 0 then the iteration is going in the wrong direction. Terminate the iteration procedure

and selectβ = β(k) andx∗ = x(k) as the best values of these quantities.

(b) If δβ < ε then the iterative procedure has converged. Terminate the iteration procedure and

selectβ = β(k) andx∗ = x(k) as the final values of these quantities.

(c) If δβ > ε then go back to step 2.

It should be noted that the convergence of the proposed iterative method cannot be always guaranteed. It

is hoped that if the failure surface is fairly regular and linear then the method would converge. Next, this

method is illustrated by a simple example.

3.1 An Example With Two Random Variables

Consider a system with two random variablesx1 andx2. The non-linear failure surface is given by

g(x) = − 4

25
(x1 − 1)2 − x2 + 4 = 0. (8)

This example is taken from Melchers (1999, page 105). Figure 2 shows the failure surface together with

the design vector. The actual design vector and reliability index obtained by Melchers (1999) is given by
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Figure 2: Nonlinear failure surface in two dimensional basic variable space: ‘—’ actual
design vectorx∗ obtained using FORM with all variables; ’−−’ design vectors obtained at
each iteration step of the proposed iterative method

x∗ =

{
−2.36
2.19

}
and β = 3.22. (9)

To apply the proposed method we need to obtain the gradients of the failure surface:

∂g(x)

∂x1

= − 8

25
(x1 − 1) (10)

∂g(x)

∂x2

= −1. (11)

The starting point of the iterative scheme isx = {0, 0}T . Table 1 shows the value ofβ andx∗ at each

iteration step using the proposed method. Note that the after five iterations the results obtained from the

proposed method converge to the actual values.
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Iteration Number x∗ β

1 {−1.0623, 3.3195}T 3.4854
2 {−1.8075, 2.7389}T 3.2815
3 {−2.1591, 2.4033}T 3.2307
4 {−2.2914, 2.2667}T 3.2231
5 {−2.3367, 2.2186}T 3.2222

Table 1: Numerical values of the design vector and reliability index at each iteration step of
the proposed iterative method

3.2 An Example With Three Random Variables

Consider a system with three random variables so thatx = {x1, x2, x3}T . The non-linear failure surface is

given by

g(x) = − 4

25
(x1 + 1)2 − (x2 − 5/2)2(x1 − 5)

10
− x3 + 3; (12)

Figure 3 shows the failure surface together with the design vector. The actual design vector and reliability

index obtained by using all the three random variables is given by

x∗ =


2.1286
1.2895
1.8547

 and β = 3.1038. (13)

To apply the proposed method we need to obtain the gradients of the failure surface:

∂g(x)

∂x1

= − 8

25
(x1 + 1)− (x2 − 5/2)2

10
(14)

∂g(x)

∂x2

= −(x2 − 5/2)(x1 − 5)

5
(15)

∂g(x)

∂x3

= −1. (16)

The starting point of the iterative scheme isx = {0, 0, 0}T . Table 2 shows the value ofβ andx∗ at each

iteration step using the proposed method. Note that the after six iterations the results obtained from the

proposed method converge to the actual values (see Figure 3).
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Figure 3: Nonlinear failure surface in three dimensional basic variable space: ‘—’ actual
design vectorx∗ obtained using FORM with all variables; ’−−’ design vectors obtained at
each iteration step of the proposed iterative method

4 Method 2: Dominant Gradient Method

Here we keep more that one random variable in the analysis. The criteria for selecting the random variables

is based on the sensitivity of the failure surface with respect to the random variables. Assume that

∇g =

{
∂g(x)

∂xi

|x=0

}
∈ Rn (17)
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Iteration Number x∗ β

1 x∗ =


4.2245
11.1758
4.4703

 12.7565

2 x∗ =


3.8085
−0.5572
0.4140

 3.8713

3 x∗ =


2.8825
0.8490
1.1654

 3.2230

4 x∗ =


2.4309
1.1219
1.6046

 3.1213

5 x∗ =


2.2506
1.2375
1.7476

 3.1066

6 x∗ =


2.1788
1.2610
1.8163

 3.1042

Table 2: Numerical values of the design vector and reliability index at each iteration step of
the proposed iterative method

is normalized so that∇gT ∇g = 1. Suppose onlynd entries of∇g has significant non-zero (negative or

positive) values while all other entries are close to zero. Consider the index set of these dominant variables

is given byId. We construct the vector of dominant random variablesv ∈ Rnd so that

vj = xi, ∀j = 1, · · · , nd and i ∈ Id. (18)

This equation can also be represented in a matrix form as

v = Dx (19)

whereD ∈ Rnd×n is such thatDji = 1∀j = 1, · · · , nd; i ∈ Id and zero everywhere else. All other random

variables are assumed to be zero, that isxi = 0,∀i /∈ Id. This implies that these variables assumed to be

deterministic so that they do not play any role in the reliability analysis (see the discussion on ‘omission

sensitivity factors’ by Madsen, 1988). Using these reduced set of variables one may obtain the failure

surface in the reduced spaceg′(v). Thus the optimization problem in the reduced space reads

minβ = (vT v)1/2 subject to g′(v) = 0. (20)
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The design point in the reduced space,v∗, can be obtained from the solution of (20). Fromv∗, the design

point in the actual space can simply be obtained by substitutingx∗i = v∗j ,∀j = 1, · · · , nd; i ∈ Id and

x∗i = 0,∀ i /∈ Id.

It should be noted that this approach is based on sensitivity ofg(x) at x = 0. For linear failure surface

∇g|x=0 is the unit vector along truex∗ and the dominant random variables selected by above procedure

are actually the dominant random variables at the design point. For nonlinearg(x), ∇g|x=0 is in general

not the unit vector along truex∗. Thus the dominant random variables selected from∇g|x=0 are not

necessarily the dominant random variables at the design point. Ideally the dominant random variables

should be selected on the basis of∇g evaluated at the design point. Keeping this in mind, we try to update

∇g in an iterative way so that the dominant random variables are selected on the basis of∇g evaluated

at points gradually closer to the true design point. First, based on∇g|x=0, an initial v∗ is obtained by

solving the optimization problem (20). From this initialv∗ the initial design point in the original space,

sayx∗0, is obtained. Next we use this point to obtain a new sensitivity vector∇g|x=x∗
0
. Based on this

we again select the dominant random variables and repeat the procedure to obtain the next estimate ofx∗,

sayx∗1. The method then uses this point to calculate∇g and continues until two successive estimates of

design points are close enough. In summary, for nonlinearg(x), the iterative procedure can be described

as follows:

1. For k = 0, selectx(k) = 0, a small value ofε, sayε = 0.001, a large value ofβ(k), sayβ(k) = 10

and alsond < n.

2. Calculate∇g
(k)
i =

∂g(x)

∂xi

|x=x(k) . For i = 1, · · · , n construct the vector∇g(k) =
{
∇g

(k)
i

}
∈ Rn

and normalize so that∇g(k)T ∇g(k) = 1.

3. Sort|∇g
(k)
i | to obtain the index setId corresponding to the highestnd values.

4. Setvj = x
(k)
i ,∀j = 1, · · · , nd, i ∈ Id andx

(k)
i = 0,∀ i /∈ Id. Constructv = {vj} ∈ Rnd .

5. Using this transformation obtaing′(v) from g(x).

6. Solve the constrained optimization problem: minimizeβ = (vT v)1/2 subject tog′(v) = 0.

7. Increase the index:k = k + 1. Using the solutions from step 6 denoteβ(k) = β andv(k) = v.

8. Obtainx(k) from the inverse transformation in step 4, that isx
(k)
i = vj,∀j = 1, · · · , nd, i ∈ Id and

x
(k)
i = 0,∀ i /∈ Id.

9. Denoteδβ = β(k−1) − β(k).
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10. (a) If δβ < 0 then the iteration is going in the wrong direction. Terminate the iteration procedure

and selectβ = β(k) andx∗ = x(k) as the best values of these quantities.

(b) If δβ < ε then the iterative procedure has converged. Terminate the iteration procedure and

selectβ = β(k) andx∗ = x(k) as the final values of these quantities.

(c) If δβ > ε then go back to step 2.

The initial choice of the dominant random variables, that is,nd andId, can be automated by imposing a

selection criteria, for example, by fixing the ratio of∇g
(k)
i corresponding to the most sensitive random

variable and the least sensitive random variable. Note that the index set of the dominant variablesId

may change in different iterations, however we fixnd for all iterations. Like the method in section 3, the

convergence of the proposed iterative method cannot be always guaranteed. In the next section another

variant of this approach, which considers the contribution of the neglected variables, is proposed.

5 Method 3: Relative Importance Variable Method

Based on the entries of∇g we group the random variables into the ‘important’ and ‘unimportant’ ran-

dom variables. The random variables for which the failure surface is more sensitive are called important

variables. Like the approach in section 4, suppose onlynd < n entries of∇g with an index seti ∈ Id

is important. Suppose that the important random variables are casted in the vectorv ∈ Rnd such that

equation (18) is satisfied. However, unlike the approach in section 4, we do not completely neglect all the

‘unimportant’ random variables, but consider that they can be represented by a single random variable,

sayu such that

xi = u∇gi, ∀i /∈ Id. (21)

This equation implies that the ‘direction’ of the unimportant random variables are fixed according to the

gradient vector so thatu is effectively a scaling parameter in that direction. This method can be viewed

as a combination of the methods described in the previous two sections. Now we construct the vector of

reduced random variablesz as

z =

{
v
u

}
∈ Rnd+1. (22)

Using equations (18) and (21) one may obtain the failure surface in the reduced spaceg′(z). Thus the

optimization problem in the reduced space reads

minβ = (zT z)1/2 subject to g′(z) = 0. (23)
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The design point in the reduced space,z∗ =

{
v∗

u∗

}
, can be obtained from the solution of (23). Fromz∗,

the design point in the actual space can simply be obtained by substitutingx∗i = v∗j ,∀j = 1, · · · , nd; i ∈ Id

andx∗i = u∇gi,∀ i /∈ Id.

Note that the selection the important and unimportant random variables are based on∇g evaluated at

x = 0. The important and unimportant random variables should be selected on the basis of∇g evaluated

at the true design pointx∗. Because for nonlinearg(x), ∇g|x=0 is in general not the unit vector along true

x∗, we update∇g by an iterative method similar to the ones described in the previous two sections. In

summary this iterative approach can be described as follows:

1. For k = 0, selectx(k) = 0, a small value ofε, sayε = 0.001, a large value ofβ(k), sayβ(k) = 10

and alsond < n.

2. Calculate∇g
(k)
i =

∂g(x)

∂xi

|x=x(k) . For i = 1, · · · , n construct the vector∇g(k) =
{
∇g

(k)
i

}
∈ Rn

and normalize so that∇g(k)T ∇g(k) = 1.

3. Sort|∇g
(k)
i | to obtain the index setId corresponding to the highestnd values.

4. Setvj = x
(k)
i ,∀j = 1, · · · , nd, i ∈ Id andx

(k)
i = u∇g

(k)
i ,∀ i /∈ Id. Constructz = {vj, u} ∈ Rnd+1.

5. Using this transformation obtaing′(z) from g(x).

6. Solve the constrained optimization problem: minimizeβ = (zT z)1/2 subject tog′(z) = 0.

7. Increase the index:k = k + 1. Using the solutions from step 6 denoteβ(k) = β andz(k) = z.

8. Obtainx(k) from the inverse transformation in step 4.

9. Denoteδβ = β(k−1) − β(k).

10. (a) If δβ < 0 then the iteration is going in the wrong direction. Terminate the iteration procedure

and selectβ = β(k) andx∗ = x(k) as the best values of these quantities.

(b) If δβ < ε then the iterative procedure has converged. Terminate the iteration procedure and

selectβ = β(k) andx∗ = x(k) as the final values of these quantities.

(c) If δβ > ε then go back to step 2.

Again, like the methods in sections 3 and 4, the convergence of the proposed iterative method cannot be

always guaranteed. Beside the three methods proposed here there are several methods that have been used

to reduce the number of random variables. Brief description of these methods are given in Appendix B.
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6 Numerical Examples

6.1 2D Framed Structure

We consider a 2D framed structure with 3 members. The structure is shown in Figure 4 with element

numbering, node numbering and coordinates of the nodes in meters. It is assumed that the axial stiffness

1 2
3

4

1

2

3

(0,0)

(0,4)

(4,4) (8,4)

P

Figure 4: 2D frame with random element properties,P = 100KN

(EA) and the bending stiffness (EI) of each member are Gaussian random variables so that there are in

total six random variables,x ∈ R6. Further it is also assumed that EA and EI of different members are

uncorrelated, that is

< EAi, EAj >= 0,∀i 6= j; < EIi, EIj >= 0,∀i 6= j; < EAi, EIj >= 0,∀i, j. (24)

Therefore the joint probability density function (pdf) of the random variables are completely characterized

by the mean and the standard deviation of the random variables. Table 3 shows the numerical values of the

system properties assumes for different members. The standard deviations are expressed as a percentage

of the corresponding mean values. The vertical force applied in node 3 is assumed to be 100 KN. The

failure condition is given by specifying a maximum allowable vertical displacement at node 3, saydmax.

Now we construct the failure surface

g(x) = dmax − |δv3(x)| (25)
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EA (KN) EI (KNm2)Member Id
Mean Standard Deviation Mean Standard Deviation

1 1.0×109 3.0% 2.0×104 10.0%
2 5.0×109 7.0% 6.0×104 5.0%
3 3.0×109 10.0% 4.0×104 9.0%

Table 3: Element properties of the random 2D frame. The standard deviations are expressed
as a percentage of the corresponding mean values.

where the random variableδv3 is the vertical displacement at node 3. The structure is unsafe wheng(x) <

0 that is, whenδv3 > dmax. For numerical calculations it is assumed thatdmax = 0.095m. For more

details see the input data for theFORTRANprogram is given in Appendix A.1.

Numerical results obtained by using the proposed method is shown in Table 4. The Monte Carlo simulation

(MCS) is performed with 30000 samples. The methods in Table 4 are arranged in the order of increasing

Method β Pf

Method 1 (one iteration) 3.619 0.147×10−3

Method 2 withnd = 3 (one iteration) 3.590 0.165×10−3

Method 3 withnd = 3 (one iteration) 3.590 0.165×10−3

Conventional FORM with full set of six variables3.590 0.165×10−3

MCS with 30,000 samples − 0.166×10−3

Table 4: Properties of the random frame

computational cost. It is clear that the all the proposed methods produces satisfactory agreement with the

Monte Carlo simulation (considered as benchmark).

6.2 Mutlistoried Portal Frame

We consider a mutlistoried portal frame with 20 members. The details of the structure is shown in Figure

5 with element numbering and node numbering. It is assumed that the axial stiffness (EA) and the bending

stiffness (EI) of each member are Gaussian random variables so that there are in total 40 random variables,

x ∈ R40. Like the previous example it is also assumed that EA and EI of different members are uncor-

related. The joint probability density function (pdf) of the random variables are completely characterized

by the mean and the standard deviation of EA and EI of each member . There are three types of elements
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Figure 5: Mutlistoried portal with random element properties,P1 = 4.0 × 105KN and
P2 = 5.0× 105KN

and the numerical values of the properties of each element type is shown in Table 5. It is assumed that the

column members are of type 1, the beam members are of type 2 and the bracing members are of type 3.

The input data for theFORTRANprogram is given in the Appendix A.2.

Two horizontal forcesP1 = 4.0×105KN andP2 = 5.0×105KN are applied at nodes 9 and 11 respectively.

The failure condition is given by specifying a maximum allowable horizontal displacement at node 9, say
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EA (KN) EI (KNm2)
Element Type Standard Standard Element Numbers

Mean
Deviation

Mean
Deviation

1 5.0×109 7.0% 6.0×104 5.0% 1,3,5,7,9,11,13,15,17,19
2 3.0×109 3.0% 4.0×104 10.0% 2,6,10,14,18
3 1.0×109 10.0% 2.0×104 9.0% 4,8,12,16,20

Table 5: Element types and associated elements numbers of the random multistoried portal
frame. The standard deviations are expressed as a percentage of the corresponding mean
values.

dmax. We construct the failure surface

g(x) = dmax − |δh9(x)| (26)

where the random variableδh9 is the horizontal displacement at node 9. The structure is unsafe when

g(x) < 0 that is, whenδ3 > dmax. For numerical calculations it is assumed thatdmax = 0.16 × 10−2m.

Numerical results obtained by using the proposed method is shown in Table 6. The Monte Carlo simulation

(MCS) is performed with 9000 samples. The methods in Table 6 are arranged in the order of increasing

Method β Pf

Method 1 (one iteration) 2.857 0.214×10−2

Method 2 withnd = 4 (one iteration) 2.857 0.214×10−2

Method 3 withnd = 4 (one iteration) 2.857 0.214×10−2

Conventional FORM with full set of 40 variables2.857 0.214×10−2

MCS with 9000 samples − 0.266×10−2

Table 6: Properties of the random frame

computational cost. It is clear that the all the proposed methods using reduced number of random variables

produces same result obtained by conventional FORM with full set of 40 variables. Further, also note

that all the approximate reliability estimate methods show satisfactory agreement with the Monte Carlo

simulation (considered as benchmark).

7 Conclusions

Methods have been proposed to reduce the number of random variables in structural reliability problems

involving a large number of random variables. In total three iterative methods, namely (a) gradient pro-
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jection method, (b) dominant gradient method, and (c) relative importance variable method, have been

proposed. All the three methods are based on the sensitivity vector of the failure surface. Initial numerical

results show that there is a possibility to put these methods into real-life problems involving a large number

of random variables. Further studies will involve analyzing the efficiency of the proposed methods when

applied to problems with highly non-linear failure surfaces, such as in dynamic problems.
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A Input Data File For The FORTRANProgram

A.1 Example in Section 6.1

2D Frame Example
Analysis Type (1 = Static, 2 = Dynamic)
1
Main FE Control parameters (nels0,nn0,ndim,np_types)
3 4 2 3
Failure condition (first id: [1,2,3] => [x,y,rot]; second id: node number)
0.095,2,3
The mean property array (ea,ei,rho,alpha,beta)
5.e9 6.e4 3.2 .001 .002
1.e9 2.e4 1.2 .001 .002
3.e9 4.e4 2.2 .001 .002
Specify element type for mean property array "etype"
2 1 3
Randomness associated with mean property (in percentage of the mean value)
07.0 05.0 0.0 10.0 10.0
03.0 10.0 0.0 10.0 10.0
10.0 09.0 0.0 10.0 10.0
Nodal coordinates
0.0 4.0
4.0 4.0
8.0 4.0
0.0 0.0
Nodal connectivity (element no, connecting nodes=2, number of divisions)
1 1 2 1
2 2 3 1
3 2 4 1
Node freedom data
2
1 0 0 1
4 0 0 1
Loaded Nodes
1
3 0.0 -100.0 0.0
Fixed Nodes
0
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A.2 Example in Section 6.2

2D Multistoried Portal Frame Example
Analysis Type (1 = Static, 2 = Dynamic)
1
Main FE Control parameters (nels0,nn0,ndim,np_types)
20 12 2 3
Failure condition (first id: [1,2,3] => [x,y,rot]; second id: node number)
0.16E-02,1,9
The mean property array (ea,ei,rho,alpha,beta)
5.e9 6.e4 3.2 .001 .002
3.e9 4.e4 2.2 .001 .002
1.e9 2.e4 1.2 .001 .002
Specify element type for mean property array "etype"
1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3 1 2 1 3
Randomness associated with mean property (in percentage of the mean value)
07.0 05.0 0.0 10.0 10.0
03.0 10.0 0.0 10.0 10.0
10.0 09.0 0.0 10.0 10.0
Nodal coordinates
0.0 0.0
0.0 3.0
2.0 0.0
2.0 3.0
4.0 0.0
4.0 3.0
6.0 0.0
6.0 3.0
8.0 0.0
8.0 3.0
10.0 0.0
10.0 3.0
Nodal connectivity (element no, connecting nodes=2, number of divisions)
1 1 3 1
2 3 4 1
3 4 2 1
4 1 4 1
5 3 5 1
6 5 6 1
7 6 4 1
8 5 4 1
9 5 7 1
10 7 8 1
11 8 6 1
12 5 8 1
13 7 9 1
14 9 10 1
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15 10 8 1
16 9 8 1
17 9 11 1
18 11 12 1
19 12 10 1
20 9 12 1
Node freedom data
2
1 0 0 1
2 0 0 1
Loaded Nodes
2
9 4.0e5 0.0 0.0
11 5.0e5 0.0 0.0
Fixed Nodes
0
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B Random Variable Reduction using Singular Value Decomposition

For some set of pointsx1, x2, · · · , xm, m ≤ n in Rn we can rewrite the first-order Taylor series expansion

of g(x) aboutx∗ in a matrix form as

g ≈ Sx (27)

where

g =


g(x1)
g(x2)

...
g(xm)

 ∈ Rm (28)

and

S = [Sij] ∈ Rm×n where Sij =
∂g(x)

∂xj

|x=xi
∀j = 1, · · · , n; i = 1, · · · , m (29)

If all xi,∀ i = 1, · · · , m are on failure surface theng = 0. In view of this, we try to minimize thel2 norm

of g that is

‖g‖2 = gT g = xT ST Sx = xT Wx, where W = ST S∈ Rn. (30)

Suppose the matrix of the eigenvectors ofW is Φ so that

ΦT WΦ = µ (31)

whereµ is a real diagonal matrix asW is real and symmetric. The rank ofW is m ≤ n. Suppose

Ψ ∈ Rn×m is a partition ofΦ which contains the eigenvectors corresponding to only non-zero eigenvalues

of W. Using this we obtain a transformation

v = ΨT x ∈ Rm. (32)

The vectorv is the reduced set of random variables which can be used for reliability assessment. For linear

g(x), W is of rank one and this method reduces to the gradient projection method described in section 3.

The set of pointsx1, x2, · · · , xm can be selected in several ways:

• Obtain a single point ong(x) and then choose a set of(m− 1) points randomly around it.

• Proceed tog(x) from the origin through the path of steepest decent and takem points closestg(x)

along this path.

This approach too can be used in the framework of a iterative scheme. However, in each iteration step

singular value decomposition of the matrixW is required and for this reason this approach is numerically

less efficient compared to the methods described in sections 3—5. Beside, the approach depends on the

choice ofx1, x2, · · · , xm and also it is not robust whenm is much less thann.


	Introduction
	Approximate Reliability Analysis Methods
	Method 1: Gradient Projection Method
	An Example With Two Random Variables
	An Example With Three Random Variables

	Method 2: Dominant Gradient Method
	Method 3: Relative Importance Variable Method
	Numerical Examples
	2D Framed Structure
	Mutlistoried Portal Frame

	Conclusions
	Input Data File For The FORTRAN Program
	Example in Section 6.1
	Example in Section 6.2

	Random Variable Reduction using Singular Value Decomposition

